Time filter

Source Type

Bulbul A.,Bilkent University | Capin T.,Bilkent University | Lavoue G.,INSA Lyon | Lavoue G.,CNRS Laboratory of Images and Information Systems Information Technology | Preda M.,Orange S.A.
IEEE Signal Processing Magazine | Year: 2011

Recent advances in evaluating and measuring the perceived visual quality of three-dimensional (3-D) polygonal models are presented in this article, which analyzes the general process of objective quality assessment metrics and subjective user evaluation methods and presents a taxonomy of existing solutions. Simple geometric error computed directly on the 3-D models does not necessarily reflect the perceived visual quality; therefore, integrating perceptual issues for 3-D quality assessment is of great significance. This article discusses existing metrics, including perceptually based ones, computed either on 3-D data or on two-dimensional (2-D) projections, and evaluates their performance for their correlation with existing subjective studies. © 2011 IEEE. Source

Vidal V.,INSA Lyon | Wolf C.,INSA Lyon | Dupont F.,CNRS Laboratory of Images and Information Systems Information Technology
Visual Computer | Year: 2012

A new mesh optimization framework for 3D triangular surface meshes is presented, which formulates the task as an energy minimization problem in the same spirit as in Hoppe et al. (SIGGRAPH'93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, 1993). The desired mesh properties are controlled through a global energy function including data attached terms measuring the fidelity to the original mesh, shape potentials favoring high quality triangles, and connectivity as well as budget terms controlling the sampling density. The optimization algorithm modifies mesh connectivity as well as the vertex positions. Solutions for the vertex repositioning step are obtained by a discrete graph cut algorithm examining global combinations of local candidates. Results on various 3D meshes compare favorably to recent state-of-the-art algorithms. Applications consist in optimizing triangular meshes and in simplifying meshes, while maintaining high mesh quality. Targeted areas are the improvement of the accuracy of numerical simulations, the convergence of numerical schemes, improvements of mesh rendering (normal field smoothness) or improvements of the geometric prediction in mesh compression techniques. © Springer-Verlag 2011. Source

Lemmouchi S.,University Claude Bernard Lyon 1 | Haddad M.,CNRS Laboratory of Images and Information Systems Information Technology | Kheddouci H.,University Claude Bernard Lyon 1
Computer Communications | Year: 2013

The study of emerged community structure is an important challenge in networks analysis. In fact, several methods have been proposed in the literature to statistically determine the significance of discovered structures. Nevertheless, most of existing analysis models consider only the structural aspect of emerged communities. We are interested in studying the robustness of emerged communities in peer-to-peer (P2P) networks. More precisely, we consider the emerged communities in the induced graph by all the exchanges in these networks. Hence, rather than examining the robustness only on the structural properties of the graph, we will focus on the parameters that allow the emergence of community structures. In fact, perturbing these parameters might destroy most of the obtained properties at the emerged level. To the best of our knowledge, robustness of networks has never been considered from this angle before. In this paper, we study the impact of perturbing the content and the profile of nodes on the emerged communities in P2P networks. We show how these alterations affect both structure and information supported by the emerged structures. © 2013 Elsevier B.V. All rights reserved. Source

Benabdeslem K.,CNRS Laboratory of Images and Information Systems Information Technology | Allab K.,University Claude Bernard Lyon 1
Neural Computing and Applications | Year: 2013

In this paper, we present a new SOM-based bi-clustering approach for continuous data. This approach is called Bi-SOM (for Bi-clustering based on Self-Organizing Map). The main goal of bi-clustering aims to simultaneously group the rows and columns of a given data matrix. In addition, we propose in this work to deal with some issues related to this task: (1) the topological visualization of bi-clusters with respect to their neighborhood relation, (2) the optimization of these bi-clusters in macro-blocks and (3) the dimensionality reduction by eliminating noise blocks, iteratively. Finally, experiments are given over several data sets for validating our approach in comparison with other bi-clustering methods. © 2012 Springer-Verlag London Limited. Source

Berry H.,French Institute for Research in Computer Science and Automation | Berry H.,CNRS Laboratory of Images and Information Systems Information Technology | Chate H.,CEA Saclay Nuclear Research Center
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics | Year: 2014

In vivo measurements of the passive movements of biomolecules or vesicles in cells consistently report "anomalous diffusion," where mean-squared displacements scale as a power law of time with exponent α<1 (subdiffusion). While the detailed mechanisms causing such behaviors are not always elucidated, movement hindrance by obstacles is often invoked. However, our understanding of how hindered diffusion leads to subdiffusion is based on diffusion amidst randomly located immobile obstacles. Here, we have used Monte Carlo simulations to investigate transient subdiffusion due to mobile obstacles with various modes of mobility. Our simulations confirm that the anomalous regimes rapidly disappear when the obstacles move by Brownian motion. By contrast, mobile obstacles with more confined displacements, e.g., Orstein-Ulhenbeck motion, are shown to preserve subdiffusive regimes. The mean-squared displacement of tracked protein displays convincing power laws with anomalous exponent α that varies with the density of Orstein-Ulhenbeck (OU) obstacles or the relaxation time scale of the OU process. In particular, some of the values we observed are significantly below the universal value predicted for immobile obstacles in two dimensions. Therefore, our results show that subdiffusion due to mobile obstacles with OU type of motion may account for the large variation range exhibited by experimental measurements in living cells and may explain that some experimental estimates are below the universal value predicted for immobile obstacles. © 2014 American Physical Society. Source

Discover hidden collaborations