Entity

Time filter

Source Type


Rousse G.,University Pierre and Marie Curie | Tarascon J.M.,College de France | Tarascon J.M.,CNRS Laboratory of Chemistry and Reactivity of Solids
Chemistry of Materials | Year: 2014

Electrochemical storage has become an integral part of our mobile society and great hopes are being placed in Li-ion batteries to meet future demands dictated by the upcoming electric vehicle (EV) and grid application markets. Batteries with greater autonomy and comprising materials having minimal environmental footprint need to be developed. This calls for both innovative chemistry and new concepts. Currently battery researchers are turning their attention to the design of polyanionic electrodes made up of abundant elements. Here we review recent studies which have led to the synthesis of new sulfate-based polyanionic compounds such as AMSO4X (A = Li, Na, K; M = Fe, Mn, Ni, Co; X = F, OH) and Li2M(SO4)2 (M = Fe, Co, Mn). We highlight their rich crystal chemistry, comment on structural-electrochemical relationships, and report on the feasibility of using the Fe-based compounds as positive electrodes in secondary Li-ion batteries. Additionally, we present premises for an electrochemical-magnetism correlation and offer an outlook on the future of polyanionic compounds. © 2013 American Chemical Society.


Larcher D.,CNRS Laboratory of Chemistry and Reactivity of Solids | Larcher D.,Alistore European Research Institute | Larcher D.,CNRS RS2E | Tarascon J.-M.,Alistore European Research Institute | And 3 more authors.
Nature Chemistry | Year: 2015

Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed. © 2014 Macmillan Publishers Limited. All rights reserved.


Franco A.A.,CNRS Laboratory of Chemistry and Reactivity of Solids | Franco A.A.,CNRS RS2E
RSC Advances | Year: 2013

This review focuses on the role of physical theory and computational electrochemistry for fundamental understanding, diagnostics and design of new electrochemical materials and operation conditions for energy storage through rechargeable Li ion batteries (LIBs). More particularly, deep insight based on multiscale physical modelling techniques, spanning scales from few atoms to the device level, can advise about the materials behaviour and aging and how components with optimal specifications could be made and how they can be integrated into operating devices. Concepts and different existing multiscale modelling methodologies are presented and some of the ongoing efforts within the community to understand from physical multiscale modelling and numerical simulation electrochemical mechanisms and degradation processes in LIBs are discussed. Finally, major challenges and perspectives in multiscale modelling for battery applications are highlighted. © 2013 The Royal Society of Chemistry.


Masquelier C.,CNRS Laboratory of Chemistry and Reactivity of Solids | Masquelier C.,French National Center for Scientific Research | Masquelier C.,CNRS RS2E | Croguennec L.,CNRS Laboratory of Condensed Matter Chemistry, Bordeaux | And 2 more authors.
Chemical Reviews | Year: 2013

The concept of investigating three-dimensional frameworks based on the NASICON structure as hosts for reversible insertion/extraction of alkali cations (electrodes) arose in the mid 1980s mostly from concerns about possible stability or reactivity versus metallic Na (or Li) when used as solid electrolytes. The NASICON framework was used by Goodenough in the late 1980s as a very demonstrative example of the possibility for the chemist to elaborate electrode materials functioning at controlled operating voltages. Noticeably, these structures have been recently investigated by three independent groups as model compounds for the understanding of complex Li NMR signals in paramagnetic compounds, and useful insights into the activation energies for hopping between the lithium sites were provided.


Bruce P.G.,University of St. Andrews | Freunberger S.A.,University of St. Andrews | Hardwick L.J.,University of St. Andrews | Hardwick L.J.,University of Liverpool | Tarascon J.-M.,CNRS Laboratory of Chemistry and Reactivity of Solids
Nature Materials | Year: 2012

Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Ligair (O 2) and LigS. The energy that can be stored in Ligair (based on aqueous or non-aqueous electrolytes) and LigS cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Ligair and LigS justify the continued research effort that will be needed.

Discover hidden collaborations