Entity

Time filter

Source Type


Gramain A.,University of Essex | Gramain A.,CNRS Lab for Microbiology of Extreme Environments | Diaz G.C.,Catolica del Norte University | Demergasso C.,Catolica del Norte University | And 2 more authors.
Environmental Microbiology | Year: 2011

The Salar Grande in the Coastal Range of Northern Chile is a fossil evaporitic basin filled with almost pure halite (95% NaCl average). It is assumed that the basin has not received input of brines since the Pliocene (5.3 to 1.8 million years). Below 1m the halite has remained undissolved since this time, whereas the upper layer has been dissolved and recrystallized by dripping fogs and occasional rainfall. We compared the archaeal community at different depths using both nested PCR and cultivation. The upper 10cm of halite crust contained diverse haloarchaeal species, including several from new genera, but their provenance is unknown. For samples deeper in the core, a new and rigorous procedure for chemically sterilizing the surface of single halite crystals was developed. These halite crystals contained only species of the genus Halobacterium (Hbt.). Halobacterium salinarum-like sequences were detected by PCR, and evidence that they were from ancient DNA include: comparison with numerous negative controls; detection of 16S rRNA sequence differences in non-conserved regions, indicating genuine evolutionary mutations rather than PCR-cloning artefacts; independent isolation of Hbt. salinarum from ancient halite; and diverse mechanisms possessed by this species for minimizing radiation damage and thus enhancing its potential for long-term survival. Haloarchaea related to Hbt. noricense were obtained from enrichment cultures from ~0.4 and 15.4m depth. We investigated Hbt. noricense strain A1 and found that when trapped inside halite crystals its recovery was as rapid after 27 months of entombment as at day 0, faring much better than other extreme halophiles. A biogeographical investigation showed that Hbt. noricense-like organisms were: commonly found in surface-sterilized ancient halite, associated with salt mines, in halite crusts, and, despite a much more intense search, only rarely detected in surface environments. We conclude that some Halobacterium species are specialists at long-term survival in halite. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd. Source


Krupovic M.,Institute Pasteur Paris | Gonnet M.,CNRS Lab for Microbiology of Extreme Environments | Hania W.B.,CNRS Mediterranean Institute of Oceanography (MIO) | Forterre P.,Institute Pasteur Paris | And 3 more authors.
PLoS ONE | Year: 2013

Mobilome of hyperthermophilic archaea dwelling in deep-sea hydrothermal vents is poorly characterized. To gain insight into genetic diversity and dynamics of mobile genetic elements in these environments we have sequenced five new plasmids from different Thermococcus strains that have been isolated from geographically remote hydrothermal vents. The plasmids were ascribed to two subfamilies, pTN2-like and pEXT9a-like. Gene content and phylogenetic analyses illuminated a robust connection between pTN2-like plasmids and Pyrococcus abyssi virus 1 (PAV1), with roughly half of the viral genome being composed of genes that have homologues in plasmids. Unexpectedly, pEXT9a-like plasmids were found to be closely related to the previously sequenced plasmid pMETVU01 from Methanocaldococcus vulcanius M7. Our data suggests that the latter observation is most compatible with an unprecedented horizontal transfer of a pEXT9a-like plasmid from Thermococcales to Methanococcales. Gene content analysis revealed that thermococcal plasmids encode Hfq-like proteins and toxin-antitoxin (TA) systems of two different families, VapBC and RelBE. Notably, although abundant in archaeal genomes, to our knowledge, TA and hfq-like genes have not been previously found in archaeal plasmids or viruses. Finally, the plasmids described here might prove to be useful in developing new genetic tools for hyperthermophiles. © 2013 Krupovic et al. Source


Gorlas A.,CNRS Lab for Microbiology of Extreme Environments | Geslin C.,CNRS Lab for Microbiology of Extreme Environments
Extremophiles | Year: 2013

Plaque assay is the method traditionally used to isolate and purify lytic viruses, to determine the viral titer and host range. Whereas most bacterioviruses are either temperate or lytic, the majority of known archeoviruses are not lytic (i. e. they are temperate or chronic). In view of the widespread occurrence of such viruses in extreme environments, we designed an original method, called the inverted spot test, to determine the host range and infectivity of viruses isolated from anaerobic hyperthermophilic and sulfur-reducing microorganisms. Here, we used this approach to prove for the first time the infectivity of Pyrococcus abyssi virus 1 (PAV1) and to confirm the host range of Thermococcus prieurii virus 1 (TPV1), the only two viruses isolated so far from any of the described marine hyperthermophilic archaea (Euryarchaeota phylum, Thermococcales order). © 2013 Springer Japan. Source


Richardson T.T.,Northumbria University | Gilroy L.,Northumbria University | Ishino Y.,Kyushu University | Connolly B.A.,Northumbria University | Henneke G.,CNRS Lab for Microbiology of Extreme Environments
Nucleic Acids Research | Year: 2013

Archaeal family-D DNA polymerase is inhibited by the presence of uracil in DNA template strands. When the enzyme encounters uracil, following three parameters change: DNA binding increases roughly 2-fold, the rate of polymerization slows by a factor of ∼5 and 3′-5′ proof-reading exonuclease activity is stimulated by a factor of ∼2. Together these changes result in a significant decrease in polymerization activity and a reduction in net DNA synthesis. Pol D appears to interact with template strand uracil irrespective of its distance ahead of the replication fork. Polymerization does not stop at a defined location relative to uracil, rather a general decrease in DNA synthesis is observed. 'Trans' inhibition, the slowing of Pol D by uracil on a DNA strand not being replicated is also observed. It is proposed that Pol D is able to interact with uracil by looping out the singlestranded template, allowing simultaneous contact of both the base and the primer-template junction to give a polymerase-DNA complex with diminished extension ability. © 2013 The Author(s). Source


Henneke G.,CNRS Lab for Microbiology of Extreme Environments
Biochemical Journal | Year: 2012

Using model DNA substrates and purified recombinant proteins from Pyrococcus abyssi, I have reconstituted the enzymatic reactions involved in RNA primer elimination in vitro. In my dual-labelled system, polymerase D performed efficient strand displacement DNA synthesis, generating 5'-RNA flaps which were subsequently released by Fen1, before ligation by Lig1. In this pathway, the initial cleavage event by RNase HII facilitated RNA primer removal of Okazaki fragments. In addition, I have shown that polymerase B was able to displace downstream DNA strands with a single ribonucleotide at the 5'-end, a product resulting from a single cut in the RNA initiator by RNase HII. After RNA elimination, the combined activities of strand displacement DNA synthesis by polymerase B and flap cleavage by Fen1 provided a nicked substrate for ligation by Lig1. The unique specificities of Okazaki fragment maturation enzymes and replicative DNA polymerases strongly support the existence of two pathways in the resolution of RNA fragments. © The Authors Journal compilation © 2012 Biochemical Society. Source

Discover hidden collaborations