Time filter

Source Type

Novello A.,CNRS Institute of Paleoprimatology, Human Paleontoly: Evolution and Paleoenvironments | Barboni D.,Aix - Marseille University
Journal of Archaeological Science | Year: 2015

Dendritic phytoliths that precipitate in grass inflorescences are often used in archaeology to trace the use of cereals (i.e. grasses harvested for their edible grain) and their domestication by early human societies. High amounts of these morphotypes are sometimes interpreted in terms of cereal accumulation in archaeological contexts. In sub-Saharan Africa, few cereals were domesticated during the mid-Holocene, but many wild grasses are still largely harvested by modern societies for food. The harvesting of wild cereals is also considered as one of the first stages toward early grass domestication. To evaluate how well dendritic phytoliths and/or other phytoliths produced in the grass inflorescences could help trace the use of wild cereal grains in sub-Saharan Africa, we analyzed the phytolith content of 67 African species (including 20 wild cereals), and 56 modern soils. We used test-value analysis and ANOVA to evaluate how well grass inflorescences could be distinguished from leaf/culm parts based on their phytolith content. We also measured the abundances of these phytoliths in natural soils from sub-Saharan Africa to provide a benchmark percentage abundance above which anthropogenic accumulation may be suspected in archaeological deposits. Our results confirm that, although rondel type phytoliths are abundant, only the dendritic phytolith morphotype is exclusive to the grass inflorescences. Yet, dendritic phytoliths do not occur in all species. They happen to be most frequent and found in greatest abundance (>34% relative to total phytolith count) in Panicoideae grasses (. Sehima ischaemoides, Sorghastrum stipoides, and Sorghum purpureo-sericeum), and in one Eragrostideae species (. Eragrostis squamata), which are not considered cereals. Inflorescences of the wild African cereals studied here do not happen to be particularly rich in dendritics (<7% in average). Finally, dendritics are rare in modern natural soils (<1% relative to total phytolith count, <3% relative to sum of grass silica short cells plus dendritics), even under stands of rich dendritic producers. We conclude that dendritic phytoliths may be used for tracing remarkable deposits of grass inflorescences at archaeological sites in sub-Saharan Africa, but are not exclusive to domesticated or wild cereals. Abundances of dendritics »3% relative to sum of grass silica short cell phytoliths plus dendritics are likely to indicate anthropogenic accumulation of grass inflorescences. Yet, the absence or low abundance of dendritic phytoliths in archaeological deposits may not always indicate the absence of anthropogenic accumulation of grass inflorescence material. © 2015 Elsevier Ltd.

Bibi F.,CNRS Institute of Paleoprimatology, Human Paleontoly: Evolution and Paleoenvironments
PLoS ONE | Year: 2011

The development of the Ethiopian biogeographic realm since the late Miocene is here explored with the presentation and review of fossil evidence from eastern Africa. Prostrepsiceros cf. vinayaki and an unknown species of possible caprin affinity are described from the hominid-bearing Asa Koma and Kuseralee Members (~5.7 and ~5.2 Ma) of the Middle Awash, Ethiopia. The Middle Awash Prostrepsiceros cf. vinayaki constitutes the first record of this taxon from Africa, previously known from the Siwaliks and Arabia. The possible caprin joins a number of isolated records of caprin or caprin-like taxa recorded, but poorly understood, from the late Neogene of Africa. The identification of these two taxa from the Middle Awash prompts an overdue review of fossil bovids from the sub-Saharan African record that demonstrate Eurasian affinities, including the reduncin Kobus porrecticornis, and species of Tragoportax. The fossil bovid record provides evidence for greater biological continuity between Africa and Eurasia in the late Miocene and earliest Pliocene than is found later in time. In contrast, the early Pliocene (after 5 Ma) saw the loss of any significant proportions of Eurasian-related taxa, and the continental dominance of African-endemic taxa and lineages, a pattern that continues today. © 2011 Faysal Bibi.

Orliac M.J.,Montpellier University | Ducrocq S.,CNRS Institute of Paleoprimatology, Human Paleontoly: Evolution and Paleoenvironments
Geological Magazine | Year: 2012

Raoellidae are small fossil cetartiodactyls closely related to the Cetacea. Until now undisputable raoellid remains were reported only from the early Middle Eocene of the Indian Subcontinent, although this Indo-Pakistani endemism has been challenged by several recent works describing potential raoellids from Mongolia, Myanmar and China. In this contribution we address the question of raoellid taxonomic content and definition, through a revision of the dental features of the family. This work, which includes a revision of the putative raoellid material from outside Indo-Pakistan, is primarily based on a re-examination of 'suoid' specimens from Shanghuang (Middle Eocene, coastal China). Our results indicate that the Shanghuang material both substantiates the youngest and easternmost occurrence of Raoellidae and represents the only unquestionable record of raoellids outside the Indian Subcontinent at present. This significantly extends the geographical and chronological range of the family. The occurrence of a raoellid species in the Middle Eocene of coastal China implies that raoellids dispersed from the Indian Subcontinent to eastern Asia during Early or Middle Eocene time. This tempers classical hypotheses of Middle Eocene Indian endemism and eastern Asian provincialism. © Copyright Cambridge University Press 2011.

Reed K.E.,Arizona State University | Bibi F.,CNRS Institute of Paleoprimatology, Human Paleontoly: Evolution and Paleoenvironments
Journal of Mammalian Evolution | Year: 2011

The fossil tragelaphins from the late Pliocene of Hadar are described. These are Tragelaphus lockwoodi, new species, and Tragelaphus aff. T. nakuae. Tragelaphus lockwoodi bears long horns that define one complete spiral and that are mediolaterally compressed at the base. In these and other morphological characteristics it approaches the greater kudu, T. strepsiceros, and makes a good ancestral candidate for this living species. The Hadar T. aff. T. nakuae is similar to other specimens of this species from sites >2.8 Ma in East Africa and demonstrates well the major differences between the earlier and later representatives of this taxon. The sizes and morphological variation in the large Hadar T. aff. T. nakuae sample supports the idea that female individuals of this species were horned as is the case today in the elands and the bongo. Tragelaphus lockwoodi is present only in the lower beds of the Hadar Formation, and in small numbers, while T. aff. T. nakuae is recovered in relative abundance from throughout the ca. 3.4-ca. 2.9 Ma sequence. © 2010 Springer Science+Business Media, LLC.

Licht A.,University Paris Diderot | Licht A.,CNRS Institute of Paleoprimatology, Human Paleontoly: Evolution and Paleoenvironments | Hulot G.,University Paris Diderot | Gallet Y.,University Paris Diderot | Thebault E.,University Paris Diderot
Physics of the Earth and Planetary Interiors | Year: 2013

We introduce ensembles of time-varying archeomagnetic field models, consisting of a reference model, a mean model and a thousand individual models. We present a set of three such ensembles, built from archeomagnetic, volcanic and sedimentary data sets, that cover the past three millennia. These ensembles can be used to describe the field at any location from the core surface to the magnetosphere, and assess the way uncertainties due to the limited distribution and quality of the data affect any of its component or parameter, such as individual Gauss coefficients. They provide alternative - and, we argue, more complete - descriptions of the archeomagnetic field to those provided by previously published archeomagnetic field models, being better suited to existing and emerging needs, such as those of geomagnetic data assimilation. We present the data sets we rely on - essentially the same as those used by other recent archeomagnetic field models - and describe how errors affecting the data, and errors due to non-modelled small spatial scales of the field, are taken into account. We next explain our modeling strategy and motivation for building low degree spherical harmonic degree ensembles of models. We carry on a number of end-to-end simulations to both illustrate the usefulness of such ensembles and point at the type of errors one should expect. Practical illustrations of what can be done with these three ensembles of models, with examples of geomagnetic inferences, are also described. Northern high-latitude flux patches, for instance, appear to be the most robust features of all. These patches tend to fluctuate, but clearly have some favored locations, resulting in the same clear signature with three tongues (over Northern America, Europe and Asia) in the time-averaged field at the core-mantle boundary, similar to what had been found in earlier models. Inferences about the field behavior in the Southern hemisphere are more difficult to draw. Still, some suggestions that the well-known present South Atlantic reversed patch could have arisen as early as in 1500 A.D. are found in some of the ensembles. We otherwise confirm that most of the current archeomagnetic field model limitations are related to a number of sediment cores, identified as producing frequent outliers in the modeling process. We provide evidence that such cores are likely affected by timing errors and timing delays between magnetization lock-in and sediment deposition, that future more advanced treatment should be able to handle. All source files for the three ensembles of models, together with appropriate Matlab applications can be downloaded from http://geomag.ipgp.fr/download/ARCHEO_FM.zip. © 2013 Elsevier B.V.

Discover hidden collaborations