Entity

Time filter

Source Type


Xhaard C.,University of Lorraine | Xhaard C.,French National Institute for Agricultural Research | Barres B.,French National Institute for Agricultural Research | Andrieux A.,University of Lorraine | And 3 more authors.
Molecular Ecology | Year: 2012

The advent of molecular epidemiology has greatly improved our ability to identify the population sources and track the pathogen movement. Yet the wide spatial and temporal scales usually considered are useful only to infer historical migration pathways. In this study, Bayesian genetic assignments and a landscape epidemiology approach were combined to unravel genetic origin and annual spread during a single epidemic of a plant pathogen: the poplar rust fungus Melampsora larici-populina. The study focused on a particular area - the Durance River valley - which enabled inoculum sources to be identified and channelled spread of the epidemic along a one-dimensional corridor. Spatio-temporal monitoring of disease showed that the epidemic began in the upstream part of the valley and spread out downstream. Using genetic assignment tests, individuals collected at the end of the epidemic were sorted into two genetic groups; very few hybrids were detected, although individuals from both groups coexisted locally downstream in the valley. The epidemic originated from two genetically distinct inoculum sources. Individuals of each group then dispersed southwards along the Durance River and became mixed in poplar riparian stands. These two genetic groups were found previously at a wider spatial scale and proved to result from distinct evolutionary histories on either wild or cultivated poplars. This study showed that the two groups can mix during an epidemic but do not hybridize because they then reproduce asexually. In general, the methods employed here could be useful for elucidating the genetic origin and retracing the colonization history and migration pathways of recent epidemics. © 2012 Blackwell Publishing Ltd. Source


Carter M.J.,University of Sheffield | Simon J.-C.,CNRS Institute of Genetics, Environment and Plant Protection | Nespolo R.F.,Austral University of Chile
Ecology and Evolution | Year: 2012

Organisms with coexisting sexual and asexual populations are ideal models for studying the consequences of either reproductive mode on the quantitative genetic architecture of life-history traits. In the aphid Rhopalosiphum padi, lineages differing in their sex investment coexist but all share a common parthenogenetic phase. Here, we studied multiple genotypes of R. padi specialized either for sexual and asexual reproduction and compared their genetic variation in fitness during the parthenogenetic phase. Specifically, we estimated maintenance costs as standard metabolic rate (SMR), together with fitness (measured as the intrinsic rate of increase and the net reproductive rate). We found that genetic variation (in terms of broad-sense heritability) in fitness was higher in asexual genotypes compared with sexual genotypes. Also, we found that asexual genotypes exhibited several positive genetic correlations indicating that body mass, whole-animal SMR, and apterous individuals production are contributing to fitness.Hence, it appears that in asexual genotypes, energy is fully allocated to maximize the production of parthenogenetic individuals, the simplest possible form of aphid repertoire of life-histories strategies. © 2012 The Authors. Source


N'Guessan C.A.,University Of Cocody Abidjan | Brisse S.,Institute Pasteur Paris | Le Roux-Nio A.-C.,CNRS Institute of Genetics, Environment and Plant Protection | Poussier S.,University of Reunion Island | And 2 more authors.
Journal of Microbiological Methods | Year: 2013

Ralstonia solanacearum is an important soil borne bacterial plant pathogen causing bacterial wilt on many important crops. To better monitor epidemics, efficient tools that can identify and discriminate populations are needed. In this study, we assessed variable number of tandem repeats (VNTR) genotyping as a new tool for epidemiological surveillance of R. solanacearum phylotypes, and more specifically for the monitoring of the monomorphic ecotypes "Moko" (banana-pathogenic) and "brown rot" (potato-pathogenic under cool conditions). Screening of six R. solanacearum genome sequences lead to select 36 VNTR loci that were preliminarily amplified on 24 strains. From this step, 26 single-locus primer pairs were multiplexed, and applied to a worldwide collection of 337 strains encompassing the whole phylogenetic diversity, with revelation on a capillary-electrophoresis genotype. Four loci were monomorphic within all phylotypes and were not retained; the other loci were highly polymorphic but displayed a clear phylotype-specificity. Phylotype-specific MLVA schemes were thus defined, based on 13 loci for phylotype I, 12 loci for phylotype II, 11 loci for phylotype III and 6 for phylotype IV. MLVA typing was significantly more discriminative than egl-based sequevar typing, particularly on monomorphic "brown rot" ecotype (phylotype IIB/sequevar 1) and "Moko disease" clade 4 (Phylotype IIB/sequevar 4). Our results raise promising prospects for studies of population genetic structures and epidemiological monitoring. © 2013 Elsevier B.V. Source


Bilodeau E.,Laval University | Simon J.-C.,CNRS Institute of Genetics, Environment and Plant Protection | Guay J.-F.,Laval University | Turgeon J.,Laval University | Cloutier C.,Laval University
Evolutionary Ecology | Year: 2013

The host-associated differentiation (HAD) hypothesis states that higher trophic levels in parasitic associations should exhibit similar divergence in case of host sympatric speciation. We tested HAD on populations of Aphidius ervi the main parasitoid of the pea aphid Acyrthosiphon pisum, emerging from host populations specialized on either alfalfa or red clover. Host and parasitoid populations were assessed for genetic variation and structure, while considering geography, host plant and host aphid protective symbionts Regiella insecticola and Hamiltonella defensa as potential covariables. Cluster and hierarchical analyses were used to assess the contribution of these variables to population structure, based on genotyping pea aphids and associated A. ervi with microsatellites, and host aphid facultative symbionts with 16S rDNA markers. Pea aphid genotypes were clearly distributed in two groups closely corresponding with their plant origins, confirming strong plant associated differentiation of this aphid in North America. Overall parasitism by A. ervi averaged 21. 5 % across samples, and many parasitized aphids producing a wasp hosted defensive bacteria, indicating partial or ineffective protective efficacy of these symbionts in the field. The A. ervi population genetic data failed to support differentiation according to the host plant association of their pea aphid host. Potential for parasitoid specialization was also explored in experiments where wasps from alfalfa and clover aphids were reciprocally transplanted on alternate hosts, the hypothesis being that wasp behaviour and parasitic stages should be most adapted to their host of origin. Results revealed higher probability of oviposition on the alfalfa aphids, but higher adult emergence success on red clover aphids, with no interaction as expected under HAD. We conclude that our study provides no support for the HAD in this system. We discuss factors that might impair A. ervi specialization on its divergent aphid hosts on alfalfa and clover. © 2012 Springer Science+Business Media B.V. Source


Henry L.M.,University of Oxford | Peccoud J.,CNRS Institute of Genetics, Environment and Plant Protection | Simon J.-C.,CNRS Institute of Genetics, Environment and Plant Protection | Hadfield J.D.,University of Oxford | And 3 more authors.
Current Biology | Year: 2013

Facultative or "secondary" symbionts are common in eukaryotes, particularly insects. While not essential for host survival, they often provide significant fitness benefits [1-5]. It has been hypothesized that secondary symbionts form a "horizontal gene pool" shuttling adaptive genes among host lineages in an analogous manner to plasmids and other mobile genetic elements in bacteria [6, 7]. However, we do not know whether the distributions of symbionts across host populations reflect random acquisitions followed by vertical inheritance or whether the associations have occurred repeatedly in a manner consistent with a dynamic horizontal gene pool. Here we explore these questions using the phylogenetic and ecological distributions of secondary symbionts carried by 1,104 pea aphids, Acyrthosiphon pisum. We find that not only is horizontal transfer common, but it is also associated with aphid lineages colonizing new ecological niches, including novel plant species and climatic regions. Moreover, aphids that share the same ecologies worldwide have independently acquired related symbiont genotypes, suggesting significant involvement of symbionts in their host's adaptation to different niches. We conclude that the secondary symbiont community forms a horizontal gene pool that influences the adaptation and distribution of their insect hosts. These findings highlight the importance of symbiotic microorganisms in the radiation of eukaryotes. © 2013 Elsevier Ltd. Source

Discover hidden collaborations