Entity

Time filter

Source Type

Paris, France

Golestanian R.,University of Sheffield | Golestanian R.,CNRS Gulliver Laboratory
Physical Review Letters | Year: 2010

A minimal design for a molecular swimmer is proposed that is based on a mechanochemical propulsion mechanism. Conformational changes are induced by electrostatic actuation when specific parts of the molecule temporarily acquire net charges through catalyzed chemical reactions involving ionic components. The mechanochemical cycle is designed such that the resulting conformational changes would be sufficient for achieving low Reynolds number propulsion. The system is analyzed within the recently developed framework of stochastic swimmers to take account of the noisy environment at the molecular scale. The swimming velocity of the device is found to depend on the concentration of the fuel molecule according to the Michaelis-Menten rule in enzymatic reactions. © 2010 The American Physical Society. Source


Decelle A.,University Paris - Sud | Krzakala F.,CNRS Gulliver Laboratory | Moore C.,Santa Fe Institute | Zdeborova L.,CEA Saclay Nuclear Research Center
Physical Review Letters | Year: 2011

We present an asymptotically exact analysis of the problem of detecting communities in sparse random networks generated by stochastic block models. Using the cavity method of statistical physics and its relationship to belief propagation, we unveil a phase transition from a regime where we can infer the correct group assignments of the nodes to one where these groups are undetectable. Our approach yields an optimal inference algorithm for detecting modules, including both assortative and disassortative functional modules, assessing their significance, and learning the parameters of the underlying block model. Our algorithm is scalable and applicable to real-world networks, as long as they are well described by the block model. © 2011 American Physical Society. Source


Sens P.,CNRS Gulliver Laboratory | Turner M.S.,University of Warwick
Physical Review Letters | Year: 2011

Compositional heterogeneities of cell membranes are thought to play an important role in many physiological processes. We study how variations in the membrane composition can be driven by nonthermal fluctuating forces and therefore show how these can occur relatively far from any critical point for the membrane. We show that the membrane steady state is not only controlled by the strength of the forces and how they couple to the membrane, but also by their dynamics: In a simple class of models this is captured by a single force correlation time. We conclude that the coupling of membrane composition to normal mechanical forces, such as might be exerted by polymerizing cytoskeleton filaments, could play an important role in controlling the steady state of a cell membrane that exhibits transient lateral modulations of its composition on length scales in the 10-100 nm regime. © 2011 American Physical Society. Source


Phillips R.,California Institute of Technology | Phillips R.,CNRS Gulliver Laboratory
Annual Review of Condensed Matter Physics | Year: 2015

It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest. © 2015 by Annual Reviews. Source


Lacoste D.,CNRS Gulliver Laboratory | Gaspard P.,Free University of Colombia
Physical Review Letters | Year: 2014

We derive a set of isometric fluctuation relations, which constrain the order parameter fluctuations in finite-size systems at equilibrium and in the presence of a broken symmetry. These relations are exact and should apply generally to many condensed-matter physics systems. Here, we establish these relations for magnetic systems and nematic liquid crystals in a symmetry-breaking external field, and we illustrate them on the Curie-Weiss and the XY models. Our relations also have implications for spontaneous symmetry breaking, which are discussed. © 2014 American Physical Society. Source

Discover hidden collaborations