Time filter

Source Type

Husson L.,CNRS Geosciences Laboratory of Rennes | Husson L.,CNRS Nantes Laboratory of Planetology and Geodynamics | Conrad C.P.,University of Hawaii at Manoa | Faccenna C.,Third University of Rome
Earth and Planetary Science Letters | Year: 2012

The geometric and kinematic evolution of the Andes provides insight onto the nature of the force balance beneath the South American plate. While the Andean load is opposed on its western edge by the force induced by subduction of the Nazca plate, its more elusive eastern counterpart, which we explore herein, requires some contribution from the mantle beneath the South Atlantic. Using a mantle flow model, we show that the Andes owe their existence to basal drag beneath South America caused by a cylindrical convection cell under the South Atlantic. We find that the observed Andean uplift requires both westward push from active upwelling beneath Africa and westward drag toward the downgoing Nazca slab. These mutually-reinforcing downwellings and upwellings amount to 38% and 23% of the total driving force, respectively. Further decomposition reveals that the South Atlantic cell is most vigorous near its center, rendering the net drag force higher where the Andes also reach their highest elevation. Kinematic reconstructions suggest that the South Atlantic cell could have grown owing to the migration of the Nazca slab until ~50. Ma. We propose that from 50. Ma onwards, the cell may have ceased growing westward because (i) it had reached an optimal aspect ratio and (ii) the Nazca slab became anchored into the lower mantle. Continued westward motion of the plates, however, moved the surface expressions of spreading and convergence away from the upwelling and downwelling arms of this cell. Evidence for this scenario comes from the coeval tectonic, morphologic, and magmatic events in Africa and South America during the Tertiary. © 2011 Elsevier B.V.

Husson L.,CNRS Geosciences Laboratory of Rennes | Husson L.,CNRS Nantes Laboratory of Planetology and Geodynamics
Physics of the Earth and Planetary Interiors | Year: 2012

Trench motion and upper plate deformation ultimately respond to mantle flow. Herein I build upon the mantle flow model results of Conrad and Behn (2010) and compute the drag forces underneath all plates, and show that they control the dynamics of plates and plate boundaries. The small misfit angle between between the traction azimuths of mantle traction and absolute plate motion corroborates the idea that convective mantle drag is a prominent driver of plate tectonics. Less intuitive is the fact that the interplay between the drag forces from the upper and lower plates, that amounts to -5 to 8.5×1012Nm-1 (per unit trench length), dictates both trench migration rates and upper plate deformation. At odds with the classic view that assigns the prime role to the idiosyncrasies of subduction zones (slab age, interplate friction, water content etc), I find that the intrinsic properties of subduction zones in fact only modulate this behavior. More specifically, the mean value of the integrated trenchward mantle drag force from the lower and upper plates (from -2 to 6.5×1012Nm-1) controls upper plate deformation. Conversely, it is the difference between the lower and upper plates mantle drag forces (from -3 to 10×1012Nm-1) that controls trench migration rates. In addition, I find that a minimum trenchward force of ∼2.5×1012Nm-1 must be supplied by mantle drag before trenches can actually advance, and before upper plates undergo compression. This force results from the default tendency of slabs to rollback when solely excited by their own buoyancy, and is thus the effective tensional force that slab pull exerts on the plate interface. © 2012 Elsevier B.V.

Jolivet L.,University Pierre and Marie Curie | Brun J.-P.,CNRS Geosciences Laboratory of Rennes
International Journal of Earth Sciences | Year: 2010

The Aegean region is a concentrate of the main geodynamic processes that shaped the Mediterranean region: oceanic and continental subduction, mountain building, high-pressure and low-temperature metamorphism, backarc extension, post-orogenic collapse, metamorphic core complexes, gneiss domes are the ingredients of a complex evolution that started at the end of the Cretaceous with the closure of the Tethyan ocean along the Vardar suture zone. Using available plate kinematic, geophysical, petrological and structural data, we present a synthetic tectonic map of the whole region encompassing the Balkans, Western Turkey, the Aegean Sea, the Hellenic Arc, the Mediterranean Ridge and continental Greece and we build a lithospheric-scale N-S cross-section from Crete to the Rhodope massif. We then describe the tectonic evolution of this cross-section with a series of reconstructions from ~70 Ma to the Present. We follow on the hypothesis that a single subduction has been active throughout most of the Mesozoic and the entire Cenozoic, and we show that the geological record is compatible with this hypothesis. The reconstructions show that continental subduction (Apulian and Pelagonian continental blocks) did not induce slab break-off in this case. Using this evolution, we discuss the mechanisms leading to the exhumation of metamorphic rocks and the subsequent formation of extensional metamorphic domes in the backarc region during slab retreat. The tectonic histories of the two regions showing large-scale extension, the Rhodope and the Cyclades are then compared. The respective contributions to slab retreat, post-orogenic extension and lower crust partial melting of changes in kinematic boundary conditions and in nature of subducting material, from continental to oceanic, are discussed. © 2008 Springer-Verlag.

Cloutier R.,University of Quebec at Rimouski | Cloutier R.,CNRS Geosciences Laboratory of Rennes
Seminars in Cell and Developmental Biology | Year: 2010

One of the properties of fossils is to provide unique ontogenies that have the potential to inform us of developmental patterns and processes in the past. Although fossilized ontogenies are fairly rare, size series of relatively complete specimens for more than 90 fish species have been documented in the literature. These fossilized ontogenies are known for most major phylogenetic groups of fishes and have a broad stratigraphic range extending from the Silurian to the Quaternary with a good representation during the Devonian. Classically, size series have been studied in terms of size and shape differences, where subsequently allometric changes were used as indicators of heterochronic changes in Paleozoic placoderms and sarcopterygians. Quantitative analyses of fossilized ontogenies of dipnoans have been interpreted in terms of morphological integration and fluctuating asymmetry. Recently, reconstructed sequences of ossification have been used to identify recurrent patterns of similar development in actinopterygians and sarcopterygians in order to infer phenotypic developmental modularity and saltatory pattern of development. Phylogenetic and temporal landmarks are put forward for some of the major developmental patterns in the evolution of fishes. © 2009 Elsevier Ltd. All rights reserved.

Le Borgne T.,CNRS Geosciences Laboratory of Rennes | Dentz M.,Spanish National Research Council IDAeA CSIC | Villermaux E.,Aix - Marseille University
Physical Review Letters | Year: 2013

We study scalar mixing in heterogeneous conductivity fields, whose structural disorder varies from weak to strong. A range of stretching regimes is observed, depending on the level of structural heterogeneity, measured by the log-conductivity field variance. We propose a unified framework to quantify the overall concentration distribution predicting its shape and rate of deformation as it progresses toward uniformity in the medium. The scalar mixture is represented by a set of stretched lamellae whose rate of diffusive smoothing is locally enhanced by kinematic stretching. Overlap between the lamellae is enforced by confinement of the scalar line support within the dispersion area. Based on these elementary processes, we derive analytical expressions for the concentration distribution, resulting from the interplay between stretching, diffusion, and random overlaps, holding for all field heterogeneities, residence times, and Péclet numbers. © 2013 American Physical Society.

Discover hidden collaborations