Time filter

Source Type

Villiers-en-Bois, France

Peron C.,CNRS Chize Center for Biological Studies
Proceedings. Biological sciences / The Royal Society | Year: 2012

Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies. Source

Angelier F.,CNRS Chize Center for Biological Studies | Wingfield J.C.,University of California at Davis
General and Comparative Endocrinology | Year: 2013

In this perspective paper, we emphasize the importance that integrative mechanisms, and especially the GC (glucocorticoid) stress response, can play in the ability of vertebrates to cope with ongoing global change. The GC stress response is an essential mediator of allostasis (i.e., the responses of an organism to a perturbation) that aims at maintaining stability (homeostasis) despite changing conditions. The GC stress response is a complex mechanism that depends on several physiological components and aims at promoting immediate survival at the expense of other life-history components (e.g., reproduction) when a labile perturbation factor (LPF) occurs. Importantly, this mechanism is somewhat flexible and its degree of activation can be adjusted to the fitness costs and benefits that result from the GC stress response. Therefore, this GC stress response mediates life-history decisions and is involved in the regulation of important life-history trade-offs. By inducing abrupt and rapid changes in the regime of LPFs, we believe that global change can affect the efficiency of the GC stress response to maintain homeostasis and to appropriately regulate these trades-offs. This dysfunction may result in an important mismatch between new LPFs and the associated GC stress response and, thus, in the inability of vertebrates to cope with a changing world. In that context, it is essential to better understand how the GC stress response can be adjusted to new LPFs through micro-evolution, phenotypic plasticity and phenotypic flexibility (habituation and sensitization). This paper sets up a theoretical framework, hypotheses and new perspectives that will allow testing and better understanding how the GC stress response can help or constrain individuals, populations and species to adjust to ongoing global change. © 2013 Elsevier Inc. Source

Bonnet X.,CNRS Chize Center for Biological Studies
Integrative and Comparative Biology | Year: 2012

This short review focuses on the findings associated with a long-term field study on two species of sea kraits in New Caledonia. Since 2002, more than 30 sites in the lagoon have been sampled, and in most places mark-recapture was implemented. We collected detailed data on more than 14,000 marked individuals (>6000 recaptures) and used different techniques (stable isotopes, bio-logging, analyses of diet). The objective was fundamental: to examine how amphibious snakes cope with both terrestrial and aquatic environments. As access to abundant food is likely the main evolutionary driver for the return transition toward the sea in marine tetrapods, foraging ecology was an important part of the research and novel information was obtained on this subject. Rapidly however, field observations revealed the potential interest of sea kraits for conservation issues. Our results show that these snakes are useful bio-indicators of marine biodiversity; they also provide a useful signal to monitor levels of contamination by heavy metals in the lagoon, and more generally as a means of studying the functioning of reef ecosystems. Importantly, anecdotal observations (e.g., a krait drinking during rain) provided unsuspected physiological insights of general importance to fundamental problems and conservation. One of the lessons of this long-term study is that key results emerged in an unexpected way, but all were dependent on intensive field work. © 2012 The Author. Source

Jenouvrier S.,Woods Hole Oceanographic Institution | Jenouvrier S.,CNRS Chize Center for Biological Studies
Global Change Biology | Year: 2013

This review focuses on the impacts of climate change on population dynamics. I introduce the MUP (Measuring, Understanding, and Predicting) approach, which provides a general framework where an enhanced understanding of climate-population processes, along with improved long-term data, are merged into coherent projections of future population responses to climate change. This approach can be applied to any species, but this review illustrates its benefit using birds as examples. Birds are one of the best-studied groups and a large number of studies have detected climate impacts on vital rates (i.e., life history traits, such as survival, maturation, or breeding, affecting changes in population size and composition) and population abundance. These studies reveal multifaceted effects of climate with direct, indirect, time-lagged, and nonlinear effects. However, few studies integrate these effects into a climate-dependent population model to understand the respective role of climate variables and their components (mean state, variability, extreme) on population dynamics. To quantify how populations cope with climate change impacts, I introduce a new universal variable: the 'population robustness to climate change.' The comparison of such robustness, along with prospective and retrospective analysis may help to identify the major climate threats and characteristics of threatened avian species. Finally, studies projecting avian population responses to future climate change predicted by IPCC-class climate models are rare. Population projections hinge on selecting a multiclimate model ensemble at the appropriate temporal and spatial scales and integrating both radiative forcing and internal variability in climate with fully specified uncertainties in both demographic and climate processes. © 2013 Blackwell Publishing Ltd. Source

Reed T.E.,Netherlands Institute of Ecology | Grtoan V.,Norwegian University of Science and Technology | Jenouvrier S.,Woods Hole Oceanographic Institution | Jenouvrier S.,CNRS Chize Center for Biological Studies | And 2 more authors.
Science | Year: 2013

Broad-scale environmental changes are altering patterns of natural selection in the wild, but few empirical studies have quantified the demographic cost of sustained directional selection in response to these changes. We tested whether population growth in a wild bird is negatively affected by climate change-induced phenological mismatch, using almost four decades of individual-level life-history data from a great tit population. In this population, warmer springs have generated a mismatch between the annual breeding time and the seasonal food peak, intensifying directional selection for earlier laying dates. Interannual variation in population mismatch has not, however, affected population growth. We demonstrated a mechanism contributing to this uncoupling, whereby fitness losses associated with mismatch are counteracted by fitness gains due to relaxed competition. These findings imply that natural populations may be able to tolerate considerable maladaptation driven by shifting climatic conditions without undergoing immediate declines. Source

Discover hidden collaborations