Entity

Time filter

Source Type


Thuaud F.,CNRS Laboratory for Therapeutic Innovation | Ribeiro N.,CNRS Laboratory for Therapeutic Innovation | Nebigil C.G.,CNRS Biotechnology and Cell Signaling Laboratory | Desaubry L.,CNRS Laboratory for Therapeutic Innovation
Chemistry and Biology | Year: 2013

Prohibitins (PHBs) are scaffold proteins that modulate many signaling pathways controlling cell survival, metabolism, and inflammation. Several drugs that target PHBs have been identified and evaluated for various clinical applications. Preclinical and clinical studies indicate that these PHB ligands may be useful in oncology, cardiology, and neurology, as well as against obesity. This review covers the physiological role of PHBs in health and diseases and current developments concerning PHB ligands. © 2013 Elsevier Ltd. Source


Auclair G.,CNRS Biotechnology and Cell Signaling Laboratory | Weber M.,CNRS Biotechnology and Cell Signaling Laboratory
Biochimie | Year: 2012

Cytosine methylation is an epigenetically propagated DNA modification that can modify how the DNA molecule is recognized and expressed. DNA methylation undergoes extensive reprogramming during mammalian embryogenesis and is directly linked to the regulation of pluripotency and cellular identity. Studying its regulation is also important for a better understanding of the many diseases that show epigenetic deregulations, in particular, cancer. In the recent years, a lot of progress has been made to characterize the profiles of DNA methylation at the genome level, which revealed that patterns of DNA methylation are highly dynamic between cell types. Here, we discuss the importance of DNA methylation for genome regulation and the mechanisms that remodel the DNA methylome during mammalian development, in particular the involvement of the rediscovered modified base 5-hydroxymethylcytosine. © 2012 Elsevier Masson SAS. All rights reserved. Source


Mislin G.L.A.,CNRS Biotechnology and Cell Signaling Laboratory | Schalk I.J.,CNRS Biotechnology and Cell Signaling Laboratory
Metallomics | Year: 2014

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for nosocomial infections. The prevalence of antibiotic-resistant P. aeruginosa strains is increasing, necessitating the urgent development of new strategies to improve the control of this pathogen. Its bacterial envelope constitutes of an outer and an inner membrane enclosing the periplasm. This structure plays a key role in the resistance of the pathogen, by decreasing the penetration and the biological impact of many antibiotics. However, this barrier may also be seen as the "Achilles heel" of the bacterium as some of its functions provide opportunities for breaching bacterial defenses. Siderophore-dependent iron uptake systems act as gates in the bacterial envelope and could be used in a "Trojan horse" strategy, in which the conjugation of an antibiotic to a siderophore could significantly increase the biological activity of the antibiotic, by enhancing its transport into the bacterium. In this review, we provide an overview of the various siderophore-antibiotic conjugates that have been developed for use against P. aeruginosa and show that an accurate knowledge of the structural and functional features of the proteins involved in this transmembrane transport is required for the design and synthesis of effective siderophore-antibiotic Trojan horse conjugates. © 2014 The Royal Society of Chemistry. Source


Guibert S.,Montpellier University | Guibert S.,CNRS Biotechnology and Cell Signaling Laboratory | Forne T.,Montpellier University | Weber M.,Montpellier University | Weber M.,CNRS Biotechnology and Cell Signaling Laboratory
Genome Research | Year: 2012

Epigenetic reprogramming, characterized by loss of cytosine methylation and histone modifications, occurs during mammalian development in primordial germ cells (PGCs), yet the targets and kinetics of this process are poorly characterized. Here we provide a map of cytosine methylation on a large portion of the genome in developing male and female PGCs isolated from mouse embryos. We show that DNA methylation erasure is global and affects genes of various biological functions. We also reveal complex kinetics of demethylation that are initiated at most genes in early PGC precursors around embryonic day 8.0-9.0. In addition, besides intracisternal A-particles (IAPs), we identify rare LTRERV1 retroelements and single-copy sequences that resist global methylation erasure in PGCs as well as in preimplantation embryos. Our data provide important insights into the targets and dynamics of DNA methylation reprogramming in mammalian germ cells. © 2012 by Cold Spring Harbor Laboratory Press. Source


Ayachi S.,CNRS Biotechnology and Cell Signaling Laboratory | Simonin F.,CNRS Biotechnology and Cell Signaling Laboratory
Frontiers in Endocrinology | Year: 2014

Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg-Phe-NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G-protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide group binds to NPFFR1, neuropeptide FF group to NPFFR2, pyroglutamylated RF-amide peptide group to QRFPR, prolactin-releasing peptide group to prolactin-releasing peptide receptor, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding, and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates. © 2014 Ayachi and Simonin. Source

Discover hidden collaborations