Entity

Time filter

Source Type


Lerch S.,French National Institute for Agricultural Research | Lerch S.,Clermont University | Lerch S.,University of Lyon | Lerch S.,CNRS Animal and Functionality of Animal Products Research Unit | And 20 more authors.
Journal of Dairy Science | Year: 2015

During early lactation, milk fatty acid (FA) composition is influenced by diet, animal genetics, and the high availability of preformed FA from body-fat mobilization. Long-term prepartum dietary oilseed supplementation could, therefore, modify milk FA composition postpartum in the subsequent lactation through changes in adipose tissue (AT) FA profile. To test this hypothesis, measurements were made in 19 Holstein cows fed grass-based diets containing no additional lipid (control, CTL; n = 4) or supplemented with extruded linseeds (EL; n = 4), cold-pressed fat-rich rapeseed meal (FRM; n = 6), or whole unprocessed rapeseeds (WR; n = 5) over 2 consecutive lactations (yr 1 and 2) and 2 dry periods. Oilseed supplements were withdrawn from the diets 23 d before the calving of yr 3, following the end of the previous experimental periods in yr 1 to 2. Thereafter, all cows received a total mixed ration composed of grass silage, grass hay, and concentrates (forage:concentrate ratio of 70:30 on a dry-matter basis). Cows previously fed EL and WR had a lower milk fat content (6.32% for CTL and FRM vs. 5.46% for EL and WR) and yield (1.90. kg/d for CTL and FRM vs. 1.61. kg/d for EL and WR) during the first week of lactation. Treatment effects on milk fat content and yield did not persist into lactation wk 3 and 7. Whatever the week, EL and WR increased concentration of FA in milk synthesized de novo (i.e., carbon number ≤15; 17.1. g/100. g of FA for CTL and FRM vs. 22.2. g/100. g of FA for EL and WR) and decreased concentration and secretion of preformed FA (i.e., carbon number ≤17; 56.1. g/100. g of FA for CTL and FRM vs. 49.9. g/100. g of FA for EL and WR). Alterations in milk FA composition may be explained by the lower availability of mobilized FA for uptake by the mammary gland, as indicated by the lower plasma nonesterified FA concentrations for EL and WR compared with CTL and FRM. Prepartum EL feeding increased AT and milk concentration of 18:3n-3 (0.96 vs. 0.79. g/100. g of milk FA for EL and the other groups, respectively) and intermediates of ruminal 18:3n-3 biohydrogenation. In contrast, FRM increased AT and milk concentration of ruminal cis-9 18:1 biohydrogenation intermediates. However, EL and FRM supplements resulted in a similar profile of 18-carbon FA isomers in AT (yr 2) and milk (yr 3, 4-10 wk after removing oilseeds from the diet). In conclusion, results confirm that long-term feeding of oilseed supplements alter AT FA composition and may influence milk FA composition during periods of extensive body-fat mobilization such as early lactation. © 2015 American Dairy Science Association. Source


Jurjanz S.,French National Institute for Agricultural Research | Jurjanz S.,CNRS Animal and Functionality of Animal Products Research Unit | Germain K.,French National Institute for Agricultural Research | Juin H.,French National Institute for Agricultural Research | And 2 more authors.
Animal | Year: 2015

Free-range birds such as organic broilers may ingest soil and plants during exploration. The estimation of such intakes is of great interest to quantify possible nutritional supplies and also to evaluate the risk of exposure to parasites or to environmental contaminants. Marker-based techniques are now available and would allow to quantify plant and, especially, soil intake in free-range birds, and this quantification was the aim of this study. Methodologically, the proportion of plants in diet intake was determined first using a method based on n-alkanes. Subsequently, the fraction of soil in the total intake was estimated with a second marker, acid-insoluble ash. This approach was carried out to estimate ingested amounts of plants and soil for five successive flocks of organic broilers, exploring grass-covered yards or those under trees, at two time points for each yard: 51 and 64 days of age. Each factor combination (yard type×period=flock number×age) was repeated on two different yards of 750 broilers each. The birds' plant intake varied widely, especially on grass-covered yards. The proportion of plant intake was significantly higher on grass-covered plots than under trees and was also affected, but to a lesser extent, by age or flock number. The ingestion of plants would generally not exceed 11 g of DM daily, except two extreme outliers of nearly 30 g. The daily plant intake under trees tended to be lower and never exceeded 7 g of DM. The amount of ingested plants increased significantly for spring flocks. It increased slightly but significantly with age. The proportion of ingested soil was significantly higher under trees than on grass-covered yards. Dry soil intake was generally low with not more than 3 g per day. Only in adverse conditions - that is, older birds exploring yards under trees in winter - soil intake reached the extreme value of nearly 5 g. Broilers on yards under trees ingested significantly more soil than on grass-covered yards with least square means of, respectively, 2.1 and 1.1 g dry soil per day. These quantifications would allow us to evaluate the impact of plant and soil intake in the management of free-range broilers, especially for the management in organic farming systems. Nevertheless, under the two rearing conditions tested in the current study, the quite low proportions of soil intakes would represent a low risk for the safety of the produced food, unless the birds explore yards on heavily contaminated soil. © The Animal Consortium 2014. Source


Colin J.,CNRS Animal and Functionality of Animal Products Research Unit | Allouche A.,CNRS Animal and Functionality of Animal Products Research Unit | Chauveau F.,University of Lyon | Corbier C.,CNRS Animal and Functionality of Animal Products Research Unit | And 7 more authors.
Journal of Alzheimer's Disease | Year: 2016

Oligomeric amyloid-β (Aβ) peptide contributes to impaired synaptic connections and neurodegenerative processes, and as such, represents a primary therapeutic target for Alzheimer's disease (AD)-modifying approaches. However, the lack of efficacy of drugs that inhibit production of Aβ demonstrates the need for a better characterization of its toxic effects, both on synaptic and neuronal function. Here, we used conditioned medium obtained from recombinant HEK-AβPP cells expressing the human amyloid-β protein precursor (Aβ-CM), to investigate Aβ-induced neurotoxic and synaptotoxic effects. Characterization of Aβ-CM revealed that it contained picomolar amounts of cell-secreted Aβ in its soluble form. Incubation of primary cortical neurons with Aβ-CM led to significant decreases in synaptic protein levels as compared to controls. This effect was no longer observed in neurons incubated with conditioned medium obtained from HEK-AβPP cells grown in presence of the γ-secretase inhibitor, Semagacestat or LY450139 (LY-CM). However, neurotoxic and pro-apoptotic effects of Aβ-CM were only partially prevented using LY-CM, which could be explained by other deleterious compounds related to chronic oxidative stress that were released by HEK-AβPP cells. Indeed, full neuroprotection was observed in cells exposed to LY-CM by additional treatment with the antioxidant resveratrol, or with the pluripotent n-3 polyunsaturated fatty acid docosahexaenoic acid. Inhibition of Aβ production appeared necessary but insufficient to prevent neurodegenerative effects associated with AD due to other neurotoxic compounds that could exert additional deleterious effects on neuronal function and survival. Therefore, association of various types of protective agents needs to be considered when developing strategies for AD treatment. © 2016 - IOS Press and the authors. All rights reserved. Source


Rahman A.,CNRS Biomolecular Engineering Laboratory | Gleinser M.,University of Ulm | Lanhers M.-C.,CNRS Animal and Functionality of Animal Products Research Unit | Riedel C.U.,University of Ulm | And 10 more authors.
International Dairy Journal | Year: 2014

Carnobacterium maltaromaticum is a non-starter lactic acid bacterium frequently isolated from food products. While this bacterium has been extensively studied in foods, very little is known about its fate once ingested. In this study the strain C.maltaromaticum LMA 28 was given to mice by intragastric gavage. Selective enumeration of C.maltaromaticum in the faeces showed that the bacterium is able to survive through transit of the gut. In addition, experiments showed that C.maltaromaticum is able to adhere to Caco-2, HT29, and T84 cell lines. Moreover, the measurement of four cytokines produced by human peripheral blood mononuclear cells after incubation with the bacterium suggested that C.maltaromaticum LMA 28 exhibit either a neutral or a slightly anti-inflammatory behaviour. The analysis of the genome of C.maltaromaticum LMA 28 revealed it contains genes for adaptation to the gastrointestinal tract. © 2013 Elsevier Ltd. Source


Lerch S.,CNRS Animal and Functionality of Animal Products Research Unit | Guidou C.,CNRS Animal and Functionality of Animal Products Research Unit | Thome J.-P.,University of Liege | Jurjanz S.,CNRS Animal and Functionality of Animal Products Research Unit
Journal of Agricultural and Food Chemistry | Year: 2016

Understanding how persistent organic pollutants (POPs) are released from adipose tissue (AT) to blood is a critical step in proposing rearing strategies hastening the removal of POPs from contaminated livestock. The current study aimed to determine in nonlactating ewes whether polychlorinated biphenyls (PCBs) and chlordecone are released from AT to blood along with lipids during body fat mobilization achieved through β-agonist challenges or undernutrition. β-Agonist challenges did not affect serum POP concentrations, whereas serum PCBs 138, 153, and 180 were readily increased in response to undernutrition. After 21 days of depuration in undernutrition, AT PCB 153 and 180 concentrations were increased concomitantly with a decrease in adipocyte volume, whereas AT chlordecone concentration was not different from that observed at the end of the well-fed contamination period. Thus, undernutrition may be of practical relevance for accelerating POP depuration unless it is combined with a strategy increasing their excretion pool. © 2016 American Chemical Society. Source

Discover hidden collaborations