Toulouse, France


Toulouse, France
Time filter
Source Type

Joetzjer E.,CNRM GAME | Douville H.,CNRM GAME | Delire C.,CNRM GAME | Ciais P.,Laboratory of Climate science | And 2 more authors.
Hydrology and Earth System Sciences | Year: 2013

Widely used metrics of drought are still derived solely from analyses of meteorological variables such as precipitation and temperature. While drought is generally a consequence of atmospheric anomalies, the impacts to society are more directly related to hydrologic conditions. The present study uses a standardized runoff index (SRI) as a proxy for river discharge and as a benchmark for various meteorological drought indices (scPDSI, SPI, SPEI-th, and SPEI-hg respectively). Only 12-month duration droughts are considered in order to allow a direct (no river routing) comparison between meteorological anomalies and their hydrological counterpart. The analysis is conducted over the Mississippi and Amazon river basins, which provide two contrasted test beds for evaluating drought indices at both interannual (using detrended data) and climate change (using raw data) timescales. Looking first at observations over the second half of the 20th century, the simple SPI based solely on precipitation is no less suitable than more sophisticated meteorological drought indices at detecting interannual SRI variations. Using the detrended runoff and meteorological outputs of a five-member single model ensemble of historical and 21th century climate simulations leads to the same conclusion. Looking at the 21st century projections, the response of the areal fraction in drought to global warming is shown to be strongly metric dependent and potentially overestimated by the drought indices which account for temperature variations. These results suggest that empirical meteorological drought indices should be considered with great caution in a warming climate and that more physical water balance models are needed to account for the impact of the anthropogenic radiative forcings on hydrological droughts. © 2013 Author(s).

Douville H.,CNRM GAME | Ribes A.,CNRM GAME | Decharme B.,CNRM GAME | Alkama R.,CNRM GAME | Sheffield J.,Princeton University
Nature Climate Change | Year: 2013

Global warming is expected to intensify the global hydrological cycle, with an increase of both evapotranspiration (EVT) and precipitation. Yet, the magnitude and spatial distribution of this global and annual mean response remains highly uncertain. Better constraining land EVT in twenty-first-century climate scenarios is critical for predicting changes in surface climate, including heatwaves and droughts, evaluating impacts on ecosystems and water resources, and designing adaptation policies. Continental scale EVT changes may already be underway, but have never been attributed to anthropogenic emissions of greenhouse gases and sulphate aerosols. Here we provide global gridded estimates of annual EVT and demonstrate that the latitudinal and decadal differentiation of recent EVT variations cannot be understood without invoking the anthropogenic radiative forcings. In the mid-latitudes, the emerging picture of enhanced EVT confirms the end of the dimming decades and highlights the possible threat posed by increasing drought frequency to managing water resources and achieving food security in a changing climate. © 2013 Macmillan Publishers Limited. All rights reserved.

Roehrig R.,CNRM GAME | Bouniol D.,CNRM GAME | Guichard F.,CNRM GAME | Hourdin F.,LMD | Redelsperger J.C.,LPO
Journal of Climate | Year: 2013

The present assessment of the West African monsoon in the models of the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) indicates little evolution since the third phase of CMIP (CMIP3) in terms of both biases in present-day climate and climate projections. The outlook for precipitation in twenty-first-century coupled simulations exhibits opposite responses between the westernmost and eastern Sahel. The spread in the trend amplitude, however, remains large in both regions. Besides, although all models predict a spring and summer warming of the Sahel that is 10%-50% larger than the global warming, their temperature response ranges from 0 to 7 K. CMIP5 coupled models underestimate the monsoon decadal variability, but SST-imposed simulations succeed in capturing the recent partial recovery of monsoon rainfall. Coupled models still display major SST biases in the equatorial Atlantic, inducing a systematic southward shift of the monsoon. Because of these strong biases, the monsoon is further evaluated in SST-imposed simulations along the 108W-108E African Monsoon Multidisciplinary Analysis(AMMA)transect, across a range of time scales ranging from seasonal to intraseasonal and diurnal fluctuations. The comprehensive set of observational data now available allows an in-depth evaluation of the monsoon across those scales, especially through the use of high-frequency outputs provided by some CMIP5models at selected sites along the AMMA transect. Most models capture many features of the African monsoon with varying degrees of accuracy. In particular, the simulation of the top-of-atmosphere and surface energy balances, in relation with the cloud cover, and the intermittence and diurnal cycle of precipitation demand further work to achieve a reasonable realism. © 2013 American Meteorological Society.

Ribes A.,CNRM GAME | Azais J.-M.,Toulouse 1 University Capitole | Planton S.,CNRM GAME
Climate Dynamics | Year: 2010

This paper introduces an original method for climate change detection, called temporal optimal detection method. The method consists in searching for a smooth temporal pattern in the observations. This pattern can be either the response of the climate system to a specific forcing or to a combination of forcings. Many characteristics of this new method are different from those of the classical "optimal fingerprint" method. It allows to infer the spatial distribution of the detected signal, without providing any spatial guess pattern. The spatial properties of the internal climate variability doesn't need to be estimated either. The estimation of such quantities being very challenging at regional scale, the proposed method is particularly well-suited for such scale. The efficiency of the method is illustrated by applying it on real homogenized datasets of temperatures and precipitation over France. A multimodel detection is performed in both cases, using an ensemble of atmosphere-ocean general circulation models for estimating the temporal patterns. Regarding temperatures, new results are highlighted, especially by showing that a change is detected even after removing the uniform part of the warming. The sensitivity of the method is discussed in this case, relatively to the computation of the temporal patterns and to the choice of the model. The method also allows to detect a climate change signal in precipitation. This change impacts the spatial distribution of the precipitation more than the mean over the domain. The ability of the method to provide an estimate of the spatial distribution of the change following the prescribed temporal patterns is also illustrated. © 2009 Springer-Verlag.

Joetzjer E.,CNRM GAME | Douville H.,CNRM GAME | Delire C.,CNRM GAME | Ciais P.,French Climate and Environment Sciences Laboratory
Climate Dynamics | Year: 2013

The present study aims at evaluating and comparing precipitation over the Amazon in two sets of historical and future climate simulations based on phase 3 (CMIP3) and 5 (CMIP5) of the Coupled Model Intercomparison Project. Thirteen models have been selected in order to discuss (1) potential improvements in the simulation of present-day climate and (2) the potential reduction in the uncertainties of the model response to increasing concentrations of greenhouse gases. While several features of present-day precipitation-including annual cycle, spatial distribution and co variability with tropical sea surface temperature (SST)-have been improved, strong uncertainties remain in the climate projections. A closer comparison between CMIP5 and CMIP3 highlights a weaker consensus on increased precipitation during the wet season, but a stronger consensus on a drying and lengthening of the dry season. The latter response is related to a northward shift of the boreal summer intertropical convergence zone in CMIP5, in line with a more asymmetric warming between the northern and southern hemispheres. The large uncertainties that persist in the rainfall response arise from contrasted anomalies in both moisture convergence and evapotranspiration. They might be related to the diverse response of tropical SST and ENSO (El Niño Southern Oscillation) variability, as well as to spurious behaviours among the models that show the most extreme response. Model improvements of present-day climate do not necessarily translate into more reliable projections and further efforts are needed for constraining the pattern of the SST response and the soil moisture feedback in global climate scenarios. © 2013 Springer-Verlag Berlin Heidelberg.

Dabas A.,CNRM GAME | Remy S.,Meteo - France | Bergot T.,CNRM GAME
Pure and Applied Geophysics | Year: 2012

A sodar was deployed at Roissy-Charles de Gaulle airport near Paris, France, in 2008 with the aim of improving the forecast of low visibility conditions there. During the winter of 2008-2009, an experiment was conducted that showed that the sodar can effectively detect and locate the top of fog layers which is signaled by a strong peak of acoustic reflectivity. The peak is generated by turbulence activity in the inversion layer that contrasts sharply with the low reflectivity recorded in the fog layer below. A specific version of the 1D-forecast model deployed at Roissy for low visibility conditions (COBEL-ISBA) was developed in which fogs' thicknesses are initialized by the sodar measurements rather than the information derived from the down-welling IR fluxes observed on the site. It was tested on data archived during the winters of 2008-2009 and 2009-2010 and compared to the version of the model presently operational. The results show a significant improvement-dissipation times of fogs are better predicted. © 2011 Springer Basel AG.

Honnert R.,CNRM GAME | Masson V.,CNRM GAME | Couvreux F.,CNRM GAME
Journal of the Atmospheric Sciences | Year: 2011

Turbulence is well represented by atmospheric models at very fine grid sizes, from 10 to 100 m, for which turbulent movements are mainly resolved, and by atmospheric models with grid sizes greater than 2 km, for which those movements are entirely parameterized. But what happens at intermediate scales, Wyngaard's socalled terra incognita? Here an original method is presented that provides a new diagnostic by calculating the subgrid and resolved parts of five variables at different scales: turbulent kinetic energy (TKE), heat andmoisture fluxes, and potential temperature andmixing ratio variances. They are established at intermediate scales for dry and cumulus-topped convective boundary layers. The similarity theorem allows the determination of the dimensionless variables of the problem. When the subgrid and resolved parts are studied, a new dimensionless variable, the dimensionless mesh size Δx/(h+h c), needs to be added to the Deardorff free convective scaling variables, where h is the boundary layer height and h c is the height of the cloud layer. Similarity functions for the subgrid and resolved parts are assumed to be the product of the similarity function of the total (subgrid plus resolved) variables and a "partial" similarity function that depends only on Δx/(h+h c). In order to determine the partial similarity function form, large-eddy simulations (LES) of five dry and cloudy convective boundary layers are used. The resolved and subgrid parts of the variables at coarser grid sizes are then deduced from the LES fields. The evolution of the subgrid and resolved parts in the boundary layer with Δx/(h+h c) is as follows: fine grids mainly resolve variables. As the mesh becomes coarser, more eddies are subgrid. Finally, for very large meshes, turbulence is entirely subgrid. A scale therefore exists for which the subgrid and resolved parts are equal. This is obtained for Δx/(h+h c)=0:2 in the case of TKE, 0.4 for the potential temperature variance, and 0.8 for the mixing ratio variance, indicating that the velocity structures are smaller than those for the potential temperature, which are smaller than those for the mixing ratio. Furthermore, boundary layers capped by convective clouds have structures larger than dry boundary layer ones as displayed by the Δx/(h+h c) scaling in the partial similarity functions. This new diagnostic gives a reference for evaluating current and future parameterizations at kilometric scales. As an illustration, the parameterizations of a mesoscale model are eventually evaluated at intermediate scales. In its standard version, the model produces too many resolved movements, as the turbulence scheme does not sufficiently represent the impact of the subgrid thermal. This is not true when a mass-flux scheme is introduced. However in this case, a completely subgrid thermal ismodeled leading to an overestimation of the subgrid part. © 2011 American Meteorological Society.

Ouzeau G.,CNRM GAME | Cattiaux J.,CNRM GAME | Douville H.,CNRM GAME | Ribes A.,CNRM GAME | Saint-Martin D.,CNRM GAME
Geophysical Research Letters | Year: 2011

Boreal winter 2009-2010 made headlines for cold anomalies in many countries of the northern mid-latitudes. Northern Europe was severely hit by this harsh winter in line with a record persistence of the negative phase of the North Atlantic Oscillation (NAO). In the present study, we first provide a wider perspective on how unusual this winter was by using the recent 20th Century Reanalysis. A weather regime analysis shows that the frequency of the negative NAO was unprecedented since winter 1939-1940, which is then used as a dynamical analog of winter 2009-2010 to demonstrate that the latter might have been much colder without the background global warming observed during the twentieth century. We then use an original nudging technique in ensembles of global atmospheric simulations driven by observed sea surface temperature (SST) and radiative forcings to highlight the relevance of the stratosphere for understanding if not predicting such anomalous winter seasons. Our results demonstrate that an improved representation of the lower stratosphere is necessary to reproduce not only the seasonal mean negative NAO signal, but also its intraseasonal distribution and the corresponding increased probability of cold waves over northern Europe. © 2011 by the American Geophysical Union.

Monthly Weather Review | Year: 2010

Because poor visibility conditions have a considerable influence on airport traffic, a need exists for accurate and updated fog and low-cloud forecasts. Couche Brouillard Eau Liquide (COBEL)-Interactions between Soil, Biosphere, and Atmosphere (ISBA), a boundary layer 1D numerical model, has been developed for the very short-term forecast of fog and low clouds. This forecast system assimilates local observations to produce initial profiles of temperature and specific humidity. The initial conditions have a great impact on the skill of the forecast. In this work, the authors first estimated the background error statistics; they varied greatly with time, and cross correlations between temperature and humidity in the background were significant. This led to the implementation of an ensemble Kalman filter (EnKF) within COBEL-ISBA. The new assimilation system was evaluated with temperature and specific humidity scores, as well as in terms of its impact on the quality of fog forecasts. Simulated observations were used and focused on the modeling of the atmosphere before fog formation and also on the simulation of the life cycle of fog and low clouds. For both situations, the EnKF brought a significant improvement in the initial conditions and the forecasts. The forecast of the onset and burn-off times of fogs was also improved. The EnKF was also tested with real observations and gave good results. The size of the ensemble did not have much impact when simulated observations were used, thanks to an adaptive covariance inflation algorithm, but the impact was greater when real observations were used. © 2010 American Meteorological Society.

Douville H.,CNRM GAME | Voldoire A.,CNRM GAME | Geoffroy O.,CNRM GAME
Geophysical Research Letters | Year: 2015

The observed global mean surface air temperature (GMST) has not risen over the last 15years, spurring outbreaks of skepticism regarding the nature of global warming and challenging the upper range transient response of the current-generation global climate models. Recent numerical studies have, however, tempered the relevance of the observed pause in global warming by highlighting the key role of tropical Pacific internal variability. Here we first show that many climate models overestimate the influence of the El Niño-Southern Oscillation on GMST, thereby shedding doubt on their ability to capture the tropical Pacific contribution to the hiatus. Moreover, we highlight that model results can be quite sensitive to the experimental design. We argue that overriding the surface wind stress is more suitable than nudging the sea surface temperature for controlling the tropical Pacific ocean heat uptake and, thereby, the multidecadal variability of GMST. Using the former technique, our model captures several aspects of the recent climate evolution, including the weaker slowdown of global warming over land and the transition toward a negative phase of the Pacific Decadal Oscillation. Yet the observed global warming is still overestimated not only over the recent 1998-2012 hiatus period but also over former decades, thereby suggesting that the model might be too sensitive to the prescribed radiative forcings. © 2015 The Authors.

Loading CNRM GAME collaborators
Loading CNRM GAME collaborators