Time filter

Source Type

In this work, we present a quantum mechanical scattering study of the title reaction from 1 mK to 2000 K. Total integral cross sections and thermal rate constants are compared with previous theoretical and experimental data and with simpler theoretical models to understand the range of validity of the approximations used in the previous studies. The obtained quantum reactive observables have been found to be nearly insensitive to the roto-vibrational energy of the reactants at high temperatures. More sensitive to the reactant's roto-vibrational energy are the data in the cold and ultra-cold regimes. The implications of the new data presented here in the early universe scenario are also discussed and analyzed. © 2014 the Partner Organisations.

Filippone F.,CNR Institute of Structure of Matter
Journal of Physics Condensed Matter | Year: 2014

The free-standing, quasi-2D layer of Si is known as silicene, in analogy with graphene. Much effort is devoted in the study of silicene, since, similarly to graphene, it shows a very high electron mobility. The interaction of silicene with a hybrid substrate, β-Si3N4(0001)/Si(111), exposing the β-Si3N4(0001) surface, has been studied by means of Density Functional calculations, with van der Waals interactions included. Once deepened the most important structural and electronic features of the hybrid substrate, we demonstrated that an electron transfer occurs from the substrate to the silicene layer. In turn, such an electron transfer can be modulated by the doping of the substrate. The β-Si3N4/silicene interaction appears to be strong enough to ensure adequate adsorption stability. It is also shown that electronic states of substrate and adsorbate still remain decoupled, paving the way for the exploitation of the peculiar electron mobility properties of the silicene layer. A detailed analysis in both direct and reciprocal space is reported. © 2014 IOP Publishing Ltd.

Russina O.,University of Rome La Sapienza | Triolo A.,CNR Institute of Structure of Matter
Faraday Discussions | Year: 2012

The existence of a high degree of order over the mesoscopic spatial scale in room temperature ionic liquids is one of their most intriguing properties. Recently the possibility that such a feature, that is witnessed by the occurrence of peculiar low Q diffraction features, reflects nm-scale structural organization has been questioned on the basis of both experimental and computational studies. In this contribution we discuss these studies and present novel experimental evidence that confirm the existence of nm-scale spatial heterogeneities due to the segregation of apolar moieties dispersed in a polar network. The consequence of this scenario is that when the chain polarity gets closer to that of the charged head, the structural heterogeneities are no longer observed. © 2012 The Royal Society of Chemistry.

Marcelli A.,National Institute of Nuclear Physics, Italy | Cricenti A.,CNR Institute of Structure of Matter | Kwiatek W.M.,Polish Academy of Sciences | Petibois C.,University of Bordeaux Segalen
Biotechnology Advances | Year: 2012

Extremely brilliant infrared (IR) beams provided by synchrotron radiation sources are now routinely used in many facilities with available commercial spectrometers coupled to IR microscopes. Using these intense non-thermal sources, a brilliance two or three order of magnitude higher than a conventional source is achievable through small pinholes (< 10 μm) with a high signal to-noise ratio. IR spectroscopy is a powerful technique to investigate biological systems and offers many new imaging opportunities. The field of infrared biological imaging covers a wide range of fundamental issues and applied researches such as cell imaging or tissue imaging. Molecular maps with a spatial resolution down to the diffraction limit may be now obtained with a synchrotron radiation IR source also on thick samples. Moreover, changes of the protein structure are detectable in an IR spectrum and cellular molecular markers can be identified and used to recognize a pathological status of a tissue. Molecular structure and functions are strongly correlated and this aspect is particularly relevant for imaging. We will show that the brilliance of synchrotron radiation IR sources may enhance the sensitivity of a molecular signal obtained from small biosamples, e.g., a single cell, containing extremely small amounts of organic matter. We will also show that SR IR sources allow to study chemical composition and to identify the distribution of organic molecules in cells at submicron resolution is possible with a high signal-to-noise ratio. Moreover, the recent availability of two-dimensional IR detectors promises to push forward imaging capabilities in the time domain. Indeed, with a high current synchrotron radiation facility and a Focal Plane Array the chemical imaging of individual cells can be obtained in a few minutes. Within this framework important results are expected in the next years using synchrotron radiation and Free Electron Laser (FEL) sources for spectro-microscopy and spectral-imaging, alone or in combination with Scanning Near-field Optical Microscopy methods to study the molecular composition and dynamic changes in samples of biomedical interest at micrometric and submicrometric scales, respectively. © 2012 Elsevier Inc.

Cannuccia E.,University of Rome Tor Vergata | Cannuccia E.,European Theoretical Spectroscopy Facility | Marini A.,CNR Institute of Structure of Matter
Physical Review Letters | Year: 2011

The quantum zero-point motion of the carbon atoms is shown to induce strong effects on the optical and electronic properties of diamond and trans-polyacetylene, a conjugated polymer. By using an ab initio approach, we interpret the subgap states experimentally observed in diamond in terms of entangled electron-phonon states. These states also appear in trans-polyacetylene causing the formation of strong structures in the band structure that even call into question the accuracy of the band theory. This imposes a critical revision of the results obtained for carbon-based nanostructures by assuming the atoms frozen in their equilibrium positions. © 2011 American Physical Society.

Discover hidden collaborations