Bielefeld, Germany
Bielefeld, Germany

Time filter

Source Type

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: PHC-10-2014 | Award Amount: 5.96M | Year: 2015

The aim of the PoC-ID project is to develop new micro- and nanoelectronic-based sensing and integration concepts for advanced miniaturised in vitro diagnostic devices. The project addresses the increasing demand for rapid and ultra-sensitive point-of-care diagnostics to reduce healthcare costs and increase the quality of life with a focus on infectious diseases, one of the worlds leading causes of morbidity and death. Interdisciplinary collaboration using the technology and expertise of the consortium members will be applied to develop and test a breakthrough PoC prototype for the diagnosis of respiratory syncytial virus infections and host responses in the paediatric context. PoC-ID will enable new types of point-of-care diagnostics for virtually any type of complex liquid sample. Applications are disease diagnosis, monitoring of therapeutic responses, clinical research of pathogen-host interaction and personalised medicine. The platform technology can easily be adapted to a variety of diagnostic or biosensing purposes, such as in health/environmental monitoring or food quality testing. PoC-ID will combine the detection of both pathogens and host responses leading to more accurate diagnosis as compared to the current standard which is focused on detection of pathogens only. This novel approach will support prevention and control of pathogen spread and enable faster and more personalised patient treatment. Improved performance in terms of robustness, sensitivity and selectivity will be reached by a combination of innovative nanomembrane technology, molecular engineered capture molecules and two novel sensing concepts. Further advances will be realised in terms of usability and speed of data-analysis arising from the integration of sensors, read-out electronics and microfluidics into one user friendly point-of-care (PoC) platform. Costs of the new disposable sensors will be ultra-low at high volumes, thanks to designing into microelectronics production flows.

Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

This project is the second in the series of EC-financed parts of the Graphene Flagship. The Graphene Flagship is a 10 year research and innovation endeavour with a total project cost of 1,000,000,000 euros, funded jointly by the European Commission and member states and associated countries. The first part of the Flagship was a 30-month Collaborative Project, Coordination and Support Action (CP-CSA) under the 7th framework program (2013-2016), while this and the following parts are implemented as Core Projects under the Horizon 2020 framework. The mission of the Graphene Flagship is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries. This will bring a new dimension to future technology a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the EU investment, both in terms of technological innovation and economic growth. To realise this vision, we have brought together a larger European consortium with about 150 partners in 23 countries. The partners represent academia, research institutes and industries, which work closely together in 15 technical work packages and five supporting work packages covering the entire value chain from materials to components and systems. As time progresses, the centre of gravity of the Flagship moves towards applications, which is reflected in the increasing importance of the higher - system - levels of the value chain. In this first core project the main focus is on components and initial system level tasks. The first core project is divided into 4 divisions, which in turn comprise 3 to 5 work packages on related topics. A fifth, external division acts as a link to the parts of the Flagship that are funded by the member states and associated countries, or by other funding sources. This creates a collaborative framework for the entire Flagship.

Research and Markets has announced the addition of the "The Nanocoatings Global Opportunity Report" report to their offering. 'The Nanocoatings Global Opportunity Report' examines a market that is already providing significant economic, hygiene and environmental benefit for sectors such as consumer electronics, construction, medicine & healthcare, textiles, oil & gas, infrastructure and aviation. Research and development in nanotechnology and nanomaterials is now translating into tangible consumer products, providing new functionalities and opportunities in industries such as electronics, sporting goods, wearable electronics, textiles, construction etc. A recent example is quantum dot TVs, a multi-billion dollar boon for the High-definition TV market. Countless other opportunities exist for exploiting the exceptional properties of nanomaterials and these will increase as costs come down and production technologies improve. The incorporation of nanomaterials into thin films, coatings and surfaces leads to new functionalities, completely innovative characteristics and the possibility to achieve multi-functional coatings and smart coatings. The use of nanomaterials also results in performance enhancements in wear, corrosion-wear, fatigue and corrosion resistant coatings. Nanocoatings demonstrate significant enhancement in outdoor durability and vastly improved hardness and flexibility compared to traditional coatings. - Oil and gas - - Corrosion and scaling chemical inhibitors. - - Self-healing coatings. - - Smart coatings. - - Coatings for hydraulic fracturing. - Aerospace & aviation - - Shape memory coatings. - - Corrosion resistant coatings for aircraft parts. - - Thermal protection. - - Novel functional coatings for prevention of ice-accretion and insect-contamination. - Renewable energy - - Anti-fouling protective coatings for offshore marine structures. - - Anti-reflective solar module coatings. - - Ice-phobic wind turbines. - - Coatings for solar heating and cooling. - Automotive - - Anti-fogging nanocoatings and surface treatments. - - Improved mar and scratch resistance. - - Flexible glass. - - Corrosion prevention. - - Multi-functional glazing. - - Smart surfaces. - - Surface texturing technologies with enhanced gloss. - - New decorative and optical films. - - Self-healing. - Textiles & Apparel - - Sustainable coatings. - - High UV protection. - - Smart textiles. - - Electrically conductive textiles. - - Enhanced durability and protection. - - Anti-bacterial and self-cleaning. - - Water repellent while maintaining breathability.. - Medical - - Hydrophilic lubricious, hemocompatible, and drug delivery coatings. - - Anti-bacterial coatings to prevent bacterial adhesion and biofilm formation. - - Hydrophobic and super-hydrophobic coatings. - - Lubricant coatings. - - Protective implant coatings. - - High hardness coatings for medical implants. - - Infection control. - - Antimicrobial protection or biocidic activity. - Marine - - Anti-fouling and corrosion control coatings systems. - - Reduced friction coatings. - - Underwater hull coatings. - Buildings - - Thermochromic smart windows. - - Anti-reflection glazing. - - Self-cleaning surfaces. - - Passive cooling surfaces. - - Air-purifying. - Consumer electronics - - Waterproof electronic devices. - - Anti-fingerprint touchscreens. - Global market size for target markets - Addressable markets for nanocoatings, by nanocoatings type and industry - Estimated market revenues for nanocoatings to 2025 - 300 company profiles including products and target markets 1 Executive Summary 1.1 High performance coatings 1.2 Nanocoatings 1.3 Market drivers and trends 1.4 Market size and opportunity 1.5 Market and technical challenges 2 Introduction 2.1 Properties of nanomaterials 2.2 Categorization 2.3 Nanocoatings 2.4 Hydrophobic coatings and surfaces 2.5 Superhydrophobic coatings and surfaces 2.6 Oleophobic and omniphobic coatings and surfaces 6 Market Segment Analysis, By Coatings Type 6.1 Anti-Fingerprint Nanocoatings 6.2 Anti-Microbial Nanocoatings 6.3 Anti-Corrosion Nanocoatings 6.4 Abrasion & Wear-Resistant Nanocoatings 6.5 Barrier Nanocoatings 6.6 Anti-Fouling And Easy-To-Clean Nanocoatings 6.7 Self-Cleaning (Bionic) Nanocoatings 6.8 Self-Cleaning (Photocatalytic) Nanocoatings 6.9 Uv-Resistant Nanocoatings 6.10 Thermal Barrier And Flame Retardant Nanocoatings 6.11 Anti-Icing And De-Icing 6.12 Anti-Reflective Nanocoatings 6.13 Other Nanocoatings Types 7 Market Segment Analysis, By End User Market 7.1 Aerospace 7.2 Automotive 7.3 Construction, Architecture And Exterior Protection 7.4 Electronics 7.5 Household Care, Sanitary And Indoor Air Quality 7.6 Marine 7.7 Medical & Healthcare 7.8 Military And Defence 7.9 Packaging 7.10 Textiles And Apparel 7.11 Renewable Energy 7.12 Oil And Gas Exploration 7.13 Tools And Manufacturing 7.14 Anti-Counterfeiting - 3M - Abrisa Technologies - Accucoat, inc - Aculon, Inc - Acreo Engineering - ACTNano, inc - Advanced Materials-JTJ S.R.O - Advanced Silicon Group - Advenira Enterprises, Inc - Aeonclad Coatings - agPolymer S.r.l - Agienic Antimicrobials - Agion Technologies, Inc - AkzoNobel - Albert Rechtenbacher GmbH - ALD Nanosolutions, Inc - Alexium, Inc - AM Coatings - Analytical Services & Materials, Inc - Ancatt - Applied Nanocoatings, Inc - Applied Nano Surfaces - Applied Sciences, Inc - Applied Thin Films, Inc - ARA-Authentic GmbH - Asahi Glass Co., Ltd - Autonomic Materials - Aurolab - Avaluxe International GmbH - Bactiguard AB - BASF Corporation - Battelle - Beijing ChamGo Nano-Tech Co., Ltd., - Beneq OY - BigSky Technologies LLC - Biocote Ltd - Bio-Gate AG - Bioni CS GmbH - Bionic Technology Holding BV - Boral Limited - Buhler Partec - BYK-Chemie GmbH - California Nanotechnologies Corporation - Cambridge Nanotherm Limited - Cambrios Technologies Corporation - Canatu Oy - Carbodeon Ltd. Oy - Ceko Co., Ltd - Cellutech AB - CeNano GmbH & Co. KG - Cellmat Technologies S.L - Centrosolar Glas GmbH Co. KG - Cetelon Nanotechhnik GmbH - CG2 Nanocoatings, Inc - Cima Nanotech - Clarcor Industrial Air - Clariant Produkte (Deutschland) GmbH - Cleancorp Nanocoatings - Clearbridge Technologies Pte. Ltd - Clearjet Ltd - Clou - CMR Coatings GmbH - CNM Technologies GmbH - Coating Suisse GmbH - Corning, Incorporated - Cotec GmbH - Coval Molecular Coatings - Crossroads Coatings - CSD Nano, Inc - CTC Nanotechnology GmbH - C3 Nano - Cytonix CLLC - Daicel FineChem Limited - Daikin Industries, ltd - Diamon-Fusion International, Inc - Diarc-Technology Oy - DFE Chemie GmbH - Dow Corning - Dropwise Technologies Corporation - DryWired - Dry Surface Technologies LLC - DSP Co., Ltd - Duralar Technologies - Duraseal Coatings - Eeonyx Corporation - Eikos, Inc - Engineered Nanoproducts Germany AG - Enki Technology - Envaerospace, Inc - Eurama Corporation - Europlasma NV - Excel Coatings - Evonik Hanse - Few Chemicals GmbH - FN Nano, Inc - ForgeNano - Formacoat - Fujifilm - Fumin - FutureCarbon GmbH - Future Nanocoatings - General Paints - Green Earth nano Science, Inc - Green Millenium, Inc - Grenoble INP-Pagora - Grupo Repol - GSI Creos - GVD Corporation - GXC Coatings - Hanita Coatings - Hardide Coatings - HeiQ Materials AG - Hemoteq GmbH - Henkel AG & Co. KGaA - Hexis S.A - Hiab Products - Hitachi Chemical - Honeywell International, Inc - Hy-Power Nano, Inc - HzO, Inc - Hygratek, LLC - iFyber, LLC - Imbed Biosciences, Inc - Imerys - Industrial Nanotech, Inc - Inframat Corporation - INM - Leibniz Institute for New Materials - InMat, Inc - InMold Biosystems - Innovcoat Nanocoatings and Surface Technologies Inc - Inno-X - Innventia AB - Inspiraz Technology pte LTd - Instrumental Polymer Technologies LLC - Ishihara Sangyo Kaisha, Ltd - Integrated Surface Technologies, Inc - Integran Technologies, Inc - Integricote - Interlotus Nanotechnologie GmbH - Intumescents Associates Group - ISTN, Inc - ISurTech - ITN Nanovation AG - Izovac Ltd - JNC Corporation - Joma International AS - Jotun Protective Coatings - Kaneka Corporation - Klockner Pentaplast Europe GmbH & Co. KG - Kon Corporation - Kriya Materials B.V - Laiyang Zixilai Environment Protection Technology Co., Ltd - Life Air Iaq Ltd - Lintec of America, Inc., - Liquiglide, Inc - Liquipel, LLC - Lofec Nanocoatings - Lotus Applied Technology - Lotus Leaf Coatings - Luna Innovtions - Magnolia Solar - MDS Coating Technologies Corporation - Melodea - Merck Performance Materials - Mesocoat, Inc - Metal Estalki - Millidyne Oy - MMT Textiles Limited - Modumetal, Inc - Molecular Rebar - Muschert - N2 Biomedical - Naco Technologies, Inc - Nadico Technologie GmbH - Nagase & Co - Nanohygienix LLC - Namos GmbH - Nanobiomatters S.I - Nano-care AG - NanoCover A/S - Nanocure GmbH - Nanocyl - Nanofilm, Ltd - Nano Frontier Technology - Nanoex Company - Nanogate AG - Nanohmics - Nanohorizons, Inc - Nanokote Pty Ltd - Nanomate Technology - Nano Labs Corporation - NanoLotus Scandanavia Aps - Nanomembrane - NanoPack, Inc - NanoPhos SA - Nanopool GmbH - Nanops - Nanoservices BV - Nanoshell Ltd - Nanosol AG - Nanosonic, Inc - The NanoSteel Company, Inc - Nano Surface Solutions - NanoSys GmbH - Nanotech Security Corporation - Nano-Tex, Inc - NanoTouch Materials, LLC - Nanovere Technologies, LLC - Nanovis Incorporated - Nanoveu Pte. LTD - Nanowave Co., Ltd - Nano-X GmbH - Nanoyo Group Pte Ltd - Nanto Protective Coating - NBD Nano - NEI Corporation - Nelum Sciences LLC - Nelumbo - Neverwet LLC - NGimat - NIL Technology ApS - Nissan Chemical Industries Ltd - NOF Corporation - NTC Nanotech Coatings GmbH - n-tec GmbH - NTT Advanced Technology Corporation - Oceanit - Opticote Inc - Optics Balzers Ag - Optitune International Pte - Organiclick AB - Oxford Advanced SUrfaces - P2i Ltd - Panahome Corporation - Percenta AG - Perpetual Technologies, Inc - Philippi-Hagenbuch, Inc - Picosun Oy - Pioneer Medical Devices GmbH - Pneumaticicoat Technologies - PJI Contract Pte Ltd - Polymerplus, LLC - Powdermet, Inc - PPG Industries - Promimic AB - Pureti, Inc - Quantiam Technologies, Inc, - RBNano - Reactive Surfaces, LLP - Resodyn Corporation - Rochling Engineering Plastics - Royal DSM N.V - Saint-Gobain Glass - Sandvik Materials Technology - Sarastro GmbH - Schott AG - Seashell Technology LLC-Hydrobead - Semblant - Shandong Huimin Science & Technology Co., Ltd - Sharklet Technologies, Inc - Shin-Etsu Silicones - SHM - Sioen Industries NV - SiO2 Nanotech, LLC - Sketch Co., Ltd - Slips Technology - Sono-Tek Corporation - Spartan Nano Ltd - Starfire Systems, inc - Sub-One Technology, INc - Sumitomo Electric Hard-Metal Ltd - Suncoat GmbH - SupraPolix BV - SurfaceSolutions GmbH - Surfactis Technologies SAS - Surfatek LLC - Surfix BV - Suzhou Super Nano-Textile Teco Co - Takenake Seisakusho Co., Ltd - Tesla Nanocoatings - Theta Coatings - TNO - TopChim NV - Topasol LLC - Toray Advanced Film Co., Ltd - Toto - TripleO Performance Solution - Ultratech International, Inc - Vadlau GmbH - Valentis Nanotech - Vestagen Protective Technologies, Inc - Viriflex - VTT Technical Research Center - Wacker Chemie AG - Wattglass, LLC - Well Shield LLC - Zschimmer & Schwarz For more information about this report visit Research and Markets is the world's leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.

Tchoua Ngamou P.H.,Bielefeld University | Tchoua Ngamou P.H.,Jülich Research Center | El Kasmi A.,Bielefeld University | El Kasmi A.,Abdelmalek Essaadi University | And 7 more authors.
Zeitschrift fur Physikalische Chemie | Year: 2015

Thin films and coatings are a basis for many technological processes, including microelectronics, electrochemistry and catalysis. The successful deposition of metal films and nanoparticles by chemical vapour deposition (CVD) needs control over a number of physico-chemical processes such as precursor and substrate selection, delivery, temperature, pressure and flow conditions. Here, cobalt thin films were deposited by means of pulsed-spray evaporation chemical vapour deposition (PSE-CVD) from ethanol solutions of Co(acac)2 and Co(acac)3 on bare glass and silicon substrates. The physico-chemical properties of the grown films were characterised by XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy) and HIM (helium ion microscopy). Co(acac)2 enabled the growth of cobalt metal at lower temperatures than Co(acac)3. The difference in deposition temperature was attributed to the ability of ethanol to reduce Co(acac)2 better than Co(acac)3. In addition, the film deposited from Co(acac)2 exhibited a higher metal content and a less porous structure than that deposited from Co(acac)3. Increasing the substrate temperature enhanced the carbon content because of the thermal decomposition of both precursors. Using a nickel seed layer improved the growth rate until a critical temperature of 360 °C, at which the thermal decomposition of the precursor becomes predominant. A decrease in the deposition temperature when using the nickel seed layer was only observed with Co(acac)2 precursor; the growth behaviour under these conditions was monitored with a unique UHV-compatible PSE-CVD reactor directly attached to an XPS system and ascribed to an enhancement of its catalytic reduction by ethanol. © 2015 Walter de Gruyter Berlin/Boston.

Takei H.,Toyo University | Saito J.,Toyo University | Kato K.,Toyo University | Vieker H.,Toyo University | And 3 more authors.
Journal of Nanomaterials | Year: 2015

We report on a thin layer chromatograph (TLC) with a built-in surface enhanced Raman scattering (SERS) layer for in-situ identification of chemical species separated by TLC. Our goal is to monitor mixture samples or diluted target molecules suspended in a host material, as happens often in environmental monitoring or detection of food additives. We demonstrate that the TLC-SERS can separate mixture samples and provide in-situ SERS spectra. One sample investigated was a mixture consisting of equal portions of Raman-active chemical species, rhodamine 6 G (R6G), crystal violet (CV), and 1,2-di(4-pyridyl)ethylene (BPE). The three components could be separated and their SERS spectra were obtained from different locations. Another sample was skim milk with a trace amount of melamine. Without development, no characteristic peaks were observed, but after development, a peak was observed at 694 cm-1. Unlike previous TLC-SERS whereby noble metal nanoparticles are added after development of a sample, having a built-in SERS layer greatly facilitates analysis as well as maintaining high uniformity of noble metal nanoparticles. © 2015 H. Takei et al.

Beyer A.,Bielefeld University | Vieker H.,CNM Technologies GmbH | Klett R.,Bielefeld University | zu Theenhausen H.M.,Bielefeld University | And 2 more authors.
Beilstein Journal of Nanotechnology | Year: 2015

Carbon nanomembranes (CNMs) prepared from aromatic self-assembled monolayers constitute a recently developed class of 2D materials. They are made by a combination of self-assembly, radiation-induced cross-linking and the detachment of the cross-linked SAM from its substrate. CNMs can be deposited on arbitrary substrates, including holey and perforated ones, as well as on metallic (transmission electron microscopy) grids. Therewith, freestanding membranes with a thickness of 1 nm and macroscopic lateral dimensions can be prepared. Although free-standing CNMs cannot be imaged by light microscopy, charged particle techniques can visualize them. However, CNMs are electrically insulating, which makes them sensitive to charging. We demonstrate that the helium ion microscope (HIM) is a good candidate for imaging freestanding CNMs due to its efficient charge compensation tool. Scanning with a beam of helium ions while recording the emitted secondary electrons generates the HIM images. The advantages of HIM are high resolution, high surface sensitivity and large depth of field. The effects of sample charging, imaging of multilayer CNMs as well as imaging artefacts are discussed. © 2015 Beyer et al.

Zhang X.,Bielefeld University | Waitz R.,University of Konstanz | Waitz R.,Rational AG | Yang F.,University of Konstanz | And 6 more authors.
Applied Physics Letters | Year: 2015

We report measurements of vibrational mode shapes of mechanical resonators made from ultrathin carbon nanomembranes (CNMs) with a thickness of approximately 1nm. CNMs are prepared from electron irradiation induced cross-linking of aromatic self-assembled monolayers and the variation of membrane thickness and/or density can be achieved by varying the precursor molecule. Single- and triple-layer freestanding CNMs were made by transferring them onto Si substrates with square/rectangular orifices. The vibration of the membrane was actuated by applying a sinusoidal voltage to a piezoelectric disk on which the sample was glued. The vibrational mode shapes were visualized with an imaging Mirau interferometer using a stroboscopic light source. Several mode shapes of a square membrane can be readily identified and their dynamic behavior can be well described by linear response theory of a membrane with negligible bending rigidity. By applying Fourier transformations to the time-dependent surface profiles, the dispersion relation of the transverse membrane waves can be obtained and its linear behavior verifies the membrane model. By comparing the dispersion relation to an analytical model, the static stress of the membranes was determined and found to be caused by the fabrication process. © 2015 AIP Publishing LLC.

El Kasmi A.,Abdelmalek Essaadi University | El Kasmi A.,Bielefeld University | Tian Z.-Y.,Bielefeld University | Tian Z.-Y.,CAS Institute of Engineering Thermophysics | And 4 more authors.
Applied Catalysis B: Environmental | Year: 2016

The present work reports on a one-step synthesis of thin Cu2O films deposited at 250°C using pulsed-spray evaporation chemical vapor deposition (PSE-CVD). Of interest, water addition (0, 2.5 and 5vol.%) in the liquid feedstock of Cu(acac)2 and ethanol was found to have a significant effect on the catalytic performance of these films towards CO oxidation. The obtained films were comprehensively characterized with X-ray diffraction (XRD), Helium ion microscopy (HIM), X-ray photoelectron spectroscopy (XPS) and Ultraviolet-visible (UV-vis) spectrometry. Both the surface composition and optical properties exhibited good correlation with the catalytic activity. The adopted empirical catalytic screening based on light-off curves measurement demonstrated that Cu2O prepared with 5vol.% of water in the reactant feedstock exhibited the best performance with respect to complete oxidation of CO at 175°C. This finding is reproducible and tentatively attributed to reduced crystallite grain size and more surface oxygen species generated when water was added in the feedstock. Accordingly, the innovative combination of water addition in the feedstock and the use of PSE-CVD technique is expected to assist further synthesis of new efficient thin films paving the way for catalytic applications. © 2015 Elsevier B.V..

PubMed | Bielefeld University and CNM Technologies GmbH
Type: | Journal: Beilstein journal of nanotechnology | Year: 2015

Carbon nanomembranes (CNMs) prepared from aromatic self-assembled monolayers constitute a recently developed class of 2D materials. They are made by a combination of self-assembly, radiation-induced cross-linking and the detachment of the cross-linked SAM from its substrate. CNMs can be deposited on arbitrary substrates, including holey and perforated ones, as well as on metallic (transmission electron microscopy) grids. Therewith, freestanding membranes with a thickness of 1 nm and macroscopic lateral dimensions can be prepared. Although free-standing CNMs cannot be imaged by light microscopy, charged particle techniques can visualize them. However, CNMs are electrically insulating, which makes them sensitive to charging. We demonstrate that the helium ion microscope (HIM) is a good candidate for imaging freestanding CNMs due to its efficient charge compensation tool. Scanning with a beam of helium ions while recording the emitted secondary electrons generates the HIM images. The advantages of HIM are high resolution, high surface sensitivity and large depth of field. The effects of sample charging, imaging of multilayer CNMs as well as imaging artefacts are discussed.

Loading CNM Technologies GmbH collaborators
Loading CNM Technologies GmbH collaborators