Saint-Clément-de-la-Place, France
Saint-Clément-de-la-Place, France

Time filter

Source Type

Hanus J.,Charles University | Durech J.,Charles University | Broz M.,Charles University | Marciniak A.,Adam Mickiewicz University | And 101 more authors.
Astronomy and Astrophysics | Year: 2013

Context. The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. Aims. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. Methods. We used classical dense photometric lightcurves from several sources (Uppsala Asteroid Photometric Catalogue, Palomar Transient Factory survey, and from individual observers) and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. Results. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetic and observed pole-latitude distributions, we were able to constrain the typical values of the c YORP parameter as between 0.05 and 0.6. © 2013 ESO.

Santerne A.,University of Porto | Santerne A.,Aix - Marseille University | Hebrard G.,University Pierre and Marie Curie | Hebrard G.,French National Center for Scientific Research | And 46 more authors.
Astronomy and Astrophysics | Year: 2014

In this paper we report a new transiting warm giant planet: KOI-1257 b. It was first detected in photometry as a planet-candidate by the Kepler space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661 d3 s and a high eccentricity of 0.7720.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99 0.05 M and 0.70 ± 0.07 M for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the Kepler transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45 ± 0.35 M, and a radius of 0.94 ± 0.12 R™, and thus a bulk density of 2.1 ± 1.2 g cm-3. The planet has an equilibrium temperature of 511 50 K, making it one of the few known members of the warm-Jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257 b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet. © 2014 ESO.

Fauvaud S.,Observatoire du Bois de Bardon | Sareyan J.-P.,Observatoire de la Cote dAzur | Ribas I.,Institute Of Ciencies Of Lespai Csic Ieec | Rodriguez E.,Institute Astrofisica Of Andalucia | And 44 more authors.
Astronomy and Astrophysics | Year: 2010

Context.Short-period high-amplitude pulsating stars of Population I (d Sct stars) and II (SX Phe variables) exist in the lower part of the classical (Cepheid) instability strip. Most of them have very simple pulsational behaviours, only one or two radial modes being excited. Nevertheless, BL Cam is a unique object among them, being an extreme metal-deficient field high-amplitude SX Phe variable with a large number of frequencies. Based on a frequency analysis, a pulsational interpretation was previously given. Aims.We attempt to interpret the long-term behaviour of the residuals that were not taken into account in the previous Observed-Calculated (O-C) short-term analyses. Methods.An investigation of the O-C times has been carried out, using a data set based on the previous published times of light maxima, largely enriched by those obtained during an intensive multisite photometric campaign of BL Cam lasting several months. Results. In addition to a positive (161 ± 3) × 10-9 yr-1 secular relative increase in the main pulsation period of BL Cam, we detected in the O-C data short-(144.2 d) and long-term (∼3400 d) variations, both incompatible with a scenario of stellar evolution. Conclusions. Interpreted as a light travel-time effect, the short-term O-C variation is indicative of a massive stellar component (0.46 to 1 M⊙) with a short period orbit (144.2 d), within a distance of 0.7 AU from the primary. More observations are needed to confirm the long-term O-C variations: if they were also to be caused by a light travel-time effect, they could be interpreted in terms of a third component, in this case probably a brown dwarf star (=0.03 M⊙), orbiting in ∼3400 d at a distance of 4.5 AU from the primary. © ESO, 2010.

Loading Club dAstronomie Lyon Ampere collaborators
Loading Club dAstronomie Lyon Ampere collaborators