Clinic for Special Children

Strasburg, PA, United States

Clinic for Special Children

Strasburg, PA, United States
SEARCH FILTERS
Time filter
Source Type

Aubert G.,BC Cancer Agency | Strauss K.A.,Clinic for Special Children | Lansdorp P.M.,BC Cancer Agency | Lansdorp P.M.,University of British Columbia | And 2 more authors.
Journal of Allergy and Clinical Immunology | Year: 2017

Background: Mutations in the long noncoding RNA RNase component of the mitochondrial RNA processing endoribonuclease (RMRP) give rise to the autosomal recessive condition cartilage-hair hypoplasia (CHH). The CHH disease phenotype has some overlap with dyskeratosis congenita, a well-known "telomere disorder." RMRP binds the telomerase reverse transcriptase (catalytic subunit) in some cell lines, raising the possibility that RMRP might play a role in telomere biology. Objective: We sought to determine whether a telomere phenotype is present in immune cells from patients with CHH and explore mechanisms underlying these observations. Methods: We assessed proliferative capacity and telomere length using flow-fluorescence in situ hybridization (in situ hybridization and flow cytometry) of primary lymphocytes from patients with CHH, carrier relatives, and control subjects. The role of telomerase holoenzyme components in gene expression and activity were assessed by using quantitative PCR and the telomere repeat amplification protocol from PBMCs and enriched lymphocyte cultures. Results: Lymphocyte cultures from patients with CHH display growth defects in vitro, which is consistent with an immune deficiency cellular phenotype. Here we show that telomere length and telomerase activity are impaired in primary lymphocyte subsets from patients with CHH. Notably, telomerase activity is affected in a gene dose-dependent manner when comparing heterozygote RMRP carriers with patients with CHH. Telomerase deficiency in patients with CHH is not mediated by abnormal telomerase gene transcript levels relative to those of endogenous genes. Conclusion: These findings suggest that telomere deficiency is implicated in the CHH disease phenotype through an as yet unidentified mechanism. © 2017 American Academy of Allergy, Asthma & Immunology.


Inokuchi J.-I.,Tohoku University | Go S.,Tohoku University | Go S.,Kawasaki Medical School | Yoshikawa M.,Tohoku University | And 2 more authors.
Biochimica et Biophysica Acta - General Subjects | Year: 2017

Severe auditory impairment observed in GM3 synthase-deficient mice and humans indicates that glycosphingolipids, especially sialic-acid containing gangliosides, are indispensable for hearing. Gangliosides associate with glycoproteins to form membrane microdomains, the composition of which plays a special role in maintaining the structural and functional integrity of hair cells. These microdomains, also called lipid rafts, connect with intracellular signaling and cytoskeletal systems to link cellular responses to environmental cues. During development, ganglioside species are expressed in distinctive spatial and temporal patterns throughout the cochlea. In both mice and humans, blocking particular steps of ganglioside metabolism produces distinctive neurological and auditory phenotypes. Thus each ganglioside species may have specific, non-overlapping functions within the cochlea, central auditory network, and brain. © 2017 Elsevier B.V.


Rajadhyaksha A.M.,New York Medical College | Elemento O.,New York Medical College | Puffenberger E.G.,Clinic for Special Children | Schierberl K.C.,New York Medical College | And 8 more authors.
American Journal of Human Genetics | Year: 2010

The study of inherited retinal diseases has advanced our knowledge of the cellular and molecular mechanisms involved in sensory neural signaling. Dysfunction of two specific sensory modalities, vision and proprioception, characterizes the phenotype of the rare, autosomal-recessive disorder posterior column ataxia and retinitis pigmentosa (PCARP). Using targeted DNA capture and high-throughput sequencing, we analyzed the entire 4.2 Mb candidate sequence on chromosome 1q32 to find the gene mutated in PCARP in a single family. Employing comprehensive bioinformatic analysis and filtering, we identified a single-nucleotide coding variant in the feline leukemia virus subgroup C cellular receptor 1 (FLVCR1), a gene encoding a heme-transporter protein. Sanger sequencing confirmed the FLVCR1 mutation in this family and identified different homozygous missense mutations located within the protein's transmembrane channel segment in two other unrelated families with PCARP. To determine whether the selective pathologic features of PCARP correlated with FLVCR1 expression, we examined wild-type mouse Flvcr1 mRNA levels in the posterior column of the spinal cord and the retina via quantitative real-time reverse-transcriptase PCR. The Flvcr1 mRNA levels were most abundant in the retina, followed by the posterior column of the spinal cord and other brain regions. These results suggest that aberrant FLVCR1 causes a selective degeneration of a subpopulation of neurons in the retina and the posterior columns of the spinal cord via dysregulation of heme or iron homeostasis. This finding broadens the molecular basis of sensory neural signaling to include common mechanisms that involve proprioception and vision. © 2010 The American Society of Human Genetics. All rights reserved.


Parker W.E.,University of Pennsylvania | Orlova K.A.,University of Pennsylvania | Parker W.H.,University of Pennsylvania | Birnbaum J.F.,University of Pennsylvania | And 10 more authors.
Science Translational Medicine | Year: 2013

A rare neurodevelopmental disorder in the Old Order Mennonite population called PMSE (polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome; also called Pretzel syndrome) is characterized by infantile-onset epilepsy, neurocognitive delay, craniofacial dysmorphism, and histopathological evidence of heterotopic neurons in subcortical white matter and subependymal regions. PMSE is caused by a homozygous deletion of exons 9 to 13 of the LYK5/STRADA gene, which encodes the pseudokinase STRADA, an upstream inhibitor of mammalian target of rapamycin complex 1 (mTORC1). We show that disrupted pathfinding in migrating mouse neural progenitor cells in vitro caused by STRADA depletion is prevented by mTORC1 inhibition with rapamycin or inhibition of its downstream effector p70 S6 kinase (p70S6K) with the drug PF-4708671 (p70S6Ki). We demonstrate that rapamycin can rescue aberrant cortical lamination and heterotopia associated with STRADA depletion in the mouse cerebral cortex. Constitutive mTORC1 signaling and a migration defect observed in fibroblasts from patients with PMSE were also prevented by mTORC1 inhibition. On the basis of these preclinical findings, we treated five PMSE patients with sirolimus (rapamycin) without complication and observed a reduction in seizure frequency and an improvement in receptive language. Our findings demonstrate a mechanistic link between STRADA loss and mTORC1 hyperactivity in PMSE, and suggest that mTORC1 inhibition may be a potential treatment for PMSE as well as other mTOR-associated neurodevelopmental disorders. Copyright 2013 by the American Association for the Advancement of Science; all rights reserved.


Mazariegos G.V.,University of Pittsburgh | Morton D.H.,Clinic for Special Children | Sindhi R.,University of Pittsburgh | Soltys K.,University of Pittsburgh | And 8 more authors.
Journal of Pediatrics | Year: 2012

Objective: To assess clinical and neurocognitive function in children who have undergone liver transplantation for classical maple syrup urine disease (MSUD). Study design: A total of 35 patients with classical MSUD (age 9.9 ± 7.9 years) underwent liver transplantation between 2004 and 2009. Six patients donated their liver to recipients without MSUD ("domino" transplant). We analyzed clinical outcomes for our cohort and 17 additional cases from the national United Network for Organ Sharing registry; 33 patients completed IQ and adaptive testing before transplantation, and 14 completed testing 1 year later. Results: Patient and graft survival were 100% at 4.5 ± 2.2 years of follow-up. Liver function was normal in all patients. Branched-chain amino acid levels were corrected within hours after surgery and remained stable, with leucine tolerance increasing more than 10-fold. All domino transplant recipients were alive and well with normal branched-chain amino acid homeostasis at the time of this report. Patient and graft survival for all 54 patients with MSUD undergoing liver transplantation in the United States during this period were 98% and 96%, respectively. One-third of our patients were mentally impaired (IQ ≤ 70) before transplantation, with no statistically significant change 1 year later. Conclusion: Liver transplantation is an effective long-term treatment for classical MSUD and may arrest brain damage, but will not reverse it. Copyright © 2012 Mosby Inc. All rights reserved.


Lancaster E.,University of Pennsylvania | Huijbers M.G.M.,University of Pennsylvania | Bar V.,Weizmann Institute of Science | Boronat A.,University of Pennsylvania | And 16 more authors.
Annals of Neurology | Year: 2011

Objective To report clinical and immunological investigations of contactin-associated protein-like 2 (Caspr2), an autoantigen of encephalitis and peripheral nerve hyperexcitability (PNH) previously attributed to voltage-gated potassium channels (VGKC). Methods Clinical analysis was performed on patients with encephalitis, PNH, or both. Immunoprecipitation and mass spectrometry were used to identify the antigen and to develop an assay with Caspr2-expressing cells. Immunoabsorption with Caspr2 and comparative immunostaining of brain and peripheral nerve of wild-type and Caspr2-null mice were used to assess antibody specificity. Results Using Caspr2-expressing cells, antibodies were identified in 8 patients but not in 140 patients with several types of autoimmune or viral encephalitis, PNH, or mutations of the Caspr2-encoding gene. Patients' antibodies reacted with brain and peripheral nerve in a pattern that colocalized with Caspr2. This reactivity was abrogated after immunoabsorption with Caspr2 and was absent in tissues from Caspr2-null mice. Of the 8 patients with Caspr2 antibodies, 7 had encephalopathy or seizures, 5 neuropathy or PNH, and 1 isolated PNH. Three patients also had myasthenia gravis, bulbar weakness, or symptoms that initially suggested motor neuron disease. None of the patients had active cancer; 7 responded to immunotherapy and were healthy or only mildly disabled at last follow-up (median, 8 months; range, 6-84 months). Interpretation Caspr2 is an autoantigen of encephalitis and PNH previously attributed to VGKC antibodies. The occurrence of other autoantibodies may result in a complex syndrome that at presentation could be mistaken for a motor neuron disorder. Recognition of this disorder is important, because it responds to immunotherapy. Copyright © 2011 American Neurological Association.


Lohr N.J.,University of Colorado at Denver | Molleston J.P.,Indiana University | Strauss K.A.,Clinic for Special Children | Strauss K.A.,Franklin And Marshall College | And 14 more authors.
American Journal of Human Genetics | Year: 2010

Ubiquitin ligases play an important role in the regulation of the immune system. Absence of Itch E3 ubiquitin ligase in mice has been shown to cause severe autoimmune disease. Using autozygosity mapping in a large Amish kindred, we identified a linkage region on chromosome 20 and selected candidate genes for screening. We describe, in ten patients, identification of a mutation resulting in truncation of ITCH. These patients represent the first reported human phenotype associated with ITCH deficiency. These patients not only have multisystem autoimmune disease but also display morphologic and developmental abnormalities. This disorder underscores the importance of ITCH ubiquitin ligase in many cellular processes. © 2010 The American Society of Human Genetics.


Xin B.,DDC Clinic for Special Needs Children | Puffenberger E.G.,Clinic for Special Children | Puffenberger E.G.,Franklin And Marshall College | Turben S.,DDC Clinic for Special Needs Children | And 5 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2010

We identified an autosomal recessive condition in 11 individuals in the Old Order Amish of northeastern Ohio. The syndrome was characterized by distinctive craniofacial dysmorphism, skeletal anomalies, and mental retardation. The typical craniofacial dysmorphism included brachycephaly, highly arched bushy eyebrows, synophrys, long eyelashes, low-set ears, microdontism of primary teeth, and generalized gingival hyperplasia, whereas Sprengel deformity of scapula, fusion of spine, rib abnormities, pectus excavatum, and pes planus represented skeletal anomalies. The genome-wide homozygosity mapping using six affected individuals localized the disease gene to a 3.3-Mb region on chromosome 1q23.3-q24.1. Candidate gene sequencing identified a homozygous frameshift mutation, c.139-140delAG, in the transmembrane and coiled-coil domains 1 (TMCO1) gene, as the pathogenic change in all affected members of the extended pedigree. This mutation is predicted to result in a severely truncated protein (p.Ser47Ter) of only one-fourth the original length. The TMCO1 gene product is a member of DUF841 superfamily of several eukaryotic proteins with unknown function. The gene has highly conserved amino acid sequence and is universally expressed in all human tissues examined. The high degree of conservation and the ubiquitous expression pattern in human adult and fetal tissues suggest a critical role for TMCO1. This report shows a TMCO1 sequence variant being associated with a genetic disorder in human. We propose "TMCO1 defect syndrome" as the name of this condition.


Orlova K.A.,University of Pennsylvania | Parker W.E.,University of Pennsylvania | Heuer G.G.,University of Pennsylvania | Tsai V.,University of Pennsylvania | And 5 more authors.
Journal of Clinical Investigation | Year: 2010

Polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome (PMSE) is a rare human autosomal-recessive disorder characterized by abnormal brain development, cognitive disability, and intractable epilepsy. It is caused by homozygous deletions of STE20-related kinase adaptor α (STRADA). The underlying pathogenic mechanisms of PMSE and the role of STRADA in cortical development remain unknown. Here, we found that a human PMSE brain exhibits cytomegaly, neuronal heterotopia, and aberrant activation of mammalian target of rapamycin complex 1 (mTORC1) signaling. STRADα normally binds and exports the protein kinase LKB1 out of the nucleus, leading to suppression of the mTORC1 pathway. We found that neurons in human PMSE cortex exhibited abnormal nuclear localization of LKB1. To investigate this further, we modeled PMSE in mouse neural progenitor cells (mNPCs) in vitro and in developing mouse cortex in vivo by knocking down STRADα expression. STRADα-deficient mNPCs were cytomegalic and showed aberrant rapamycin-dependent activation of mTORC1 in association with abnormal nuclear localization of LKB1. Consistent with the observations in human PMSE brain, knockdown of STRADα in vivo resulted in cortical malformation, enhanced mTORC1 activation, and abnormal nuclear localization of LKB1. Thus, we suggest that the aberrant nuclear accumulation of LKB1 caused by STRADα deficiency contributes to hyperactivation of mTORC1 signaling and disruption of neuronal lamination during corticogenesis, and thereby the neurological features associated with PMSE.


Orlova K.A.,Epilepsy Center | Tsai V.,Epilepsy Center | Baybis M.,Epilepsy Center | Heuer G.G.,University of Pennsylvania | And 6 more authors.
Journal of Neuropathology and Experimental Neurology | Year: 2010

Type I and type II focal cortical dysplasias (FCDs) exhibit distinct histopathologic features that suggest different pathogenic mechanisms. Type I FCDs are characterized by mild laminar disorganization and hypertrophic neurons, whereas type II FCDs exhibit dramatic laminar disorganization and cytomegalic cells (balloon cells). Both FCD types are associated with intractable epilepsy; therefore, identifying cellular or molecular differences between these lesion types that explains the histologic differences could provide new diagnostic and therapeutic insights. Type II FCDs express nestin, a neuroglial progenitor protein that is modulated in vitro by the stem cell proteins c-Myc, sex-determining region Y-box 2 (SOX2), and Octamer-4 (Oct-4) after activation of mammalian target of rapamycin complex 1 (mTORC1). Because mTORC1 activation has been demonstrated in type II FCDs, we hypothesized that c-Myc, SOX2, and Oct-4 expression would distinguish type II from type I FCDs. In addition, we assayed the expression of progenitor cell proteins forkhead box G1 (FOXG1), Kruppel-like factor 4 (KLF4), Nanog, and SOX3. Differential expression of 7 stem cellproteins and aberrant phosphorylation of2mTORC1 substrates, S6 andS6 kinase 1 proteins, clearly distinguished type II from type I FCDs(n = 10 each). Our results demonstrate new potential pathogenic pathways in type II FCDs and suggest biomarkers for diagnostic pathology in resected epilepsy specimens. © 2010 American Association of Neuropathologists, Inc.

Loading Clinic for Special Children collaborators
Loading Clinic for Special Children collaborators