Time filter

Source Type

Giesler R.,Climate Impacts Research Center | Lyon S.W.,Bert Bolin Center for Climate Research | Karlsson J.,Climate Impacts Research Center | Karlsson E.M.,Purdue University | And 2 more authors.
Biogeosciences | Year: 2014

Climatic change is currently enhancing permafrost thawing and the flow of water through the landscape in subarctic and arctic catchments, with major consequences for the carbon export to aquatic ecosystems. We studied stream water carbon export in several tundra-dominated catchments in northern Sweden. There were clear seasonal differences in both dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) concentrations. The highest DOC concentrations occurred during the spring freshet while the highest DIC concentrations were always observed during winter baseflow conditions for the six catchments considered in this study. Long-term trends for the period 1982 to 2010 for one of the streams showed that DIC concentrations has increased by 9% during the 28 yr of measurement while no clear trend was found for DOC. Similar increasing trends were also found for conductivity, Ca and Mg. When trends were discretized into individual months, we found a significant linear increase in DIC concentrations with time for September, November and December. In these subarctic catchments, the annual mass of C exported as DIC was in the same order of magnitude as DOC; the average proportion of DIC to the total dissolved C exported was 61% for the six streams. Furthermore, there was a direct relationship between total runoff and annual dissolved carbon fluxes for these six catchments. These relationships were more prevalent for annual DIC exports than annual DOC exports in this region. Our results also highlight that both DOC and DIC can be important in high-latitude ecosystems. This is particularly relevant in environments where thawing permafrost and changes to subsurface ice due to global warming can influence stream water fluxes of C. The large proportion of stream water DIC flux also has implications on regional C budgets and needs to be considered in order to understand climate-induced feedback mechanisms across the landscape. © 2014 Author(s).


Rosen P.,Umeå University | Rosen P.,Climate Impacts Research Center | Bindler R.,Umeå University | Korsman T.,Umeå University | And 2 more authors.
Biogeosciences | Year: 2011

Lysevatten, a lake in southwest Sweden, has experienced both acidification and recent changes in the amount of lake-water organic carbon (TOC), both causing concern across Europe and North America. A range of paleolimnological tools - diatom-inferred pH, inferred lake-water TOC from visible-near-infrared spectroscopy (VNIRS), multi-element geochemistry and pollen analysis, combined with geochemical modeling were used to reconstruct the lake's chemistry and surroundings back to the most recent deglaciation 12 500 years ago. The results reveal that the recent anthropogenic impacts are similar in magnitude to the long-term variation driven by natural catchment changes and early agricultural land use occurring over centuries and millennia. The combined reconstruction of both lake-water TOC and lithogenic element delivery can explain the major changes in lake-water pH and modeled acid neutralizing capacity during the past 12 500 years. The results raise important questions regarding what precisely comprises "reference" conditions (i.e., free from human impacts) as defined in the European Water Framework Directive. © Author(s) 2011.


Meyer-Jacob C.,Umeå University | Vogel H.,University of Cologne | Vogel H.,University of Bern | Gebhardt A.C.,Alfred Wegener Institute for Polar and Marine Research | And 4 more authors.
Climate of the Past | Year: 2014

A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n Combining double low line 420; gradient: 0.9-56.5%), total organic carbon (TOC; n Combining double low line 309; gradient: 0-2.9%), and total inorganic carbon (TIC; nCombining double low line 152; gradient: 0-0.4%) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El'gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2CV Combining double low line 0.86-0.91 and low root mean square error of cross-validation (RMSECV) (3.1-7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El'gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6-3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was ∼3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial-interglacial cycles during the Quaternary. ©Author(s) 2014.


Jones V.J.,University College London | Solovieva N.,University College London | Self A.E.,University College London | Self A.E.,Natural History Museum in London | And 7 more authors.
Journal of Paleolimnology | Year: 2011

A consequence of predicted climate warming will be tree-line advance over large areas of the Russian tundra. Palaeolimnological techniques can be used to provide analogues of how such changes in tree-line advance and subsequent retreat affected lake ecosystems in the past. A Holocene sediment core taken from Kharinei Lake (Russia) was dated radiometrically and used for multi-proxy analyses with the aim of determining how climate and tree-line dynamics affected the productivity, community structure, carbon cycling and light regime in the lake. Pollen and macrofossil analyses were used to determine the dates of the arrival and retreat of birch and spruce forest. C:N ratios and percent loss-on-ignition were used to infer past changes in sediment organic matter. Visible-near-infrared spectroscopy and diatom analysis were used to infer past changes in lake-water carbon. Algal pigments and aquatic macrophytes were used to determine changes in lake productivity and light. Chironomids together with remains of the aquatic flora and fauna were used to provide information on past July temperature and continentality. Lake sedimentation was initiated shortly before 11,000 cal. years BP, when both chironomid- and pollen-inferred temperature reconstructions suggest higher summer temperatures than present, between 1 and 2°C warmer, and lake productivity was relatively high. A few trees were already present at this time. The spruce forest expanded at 8,000 cal. year BP remaining in the vicinity of the lake until 3,500 cal. year BP. This period coincided with a high concentration of organic material in the water column, and relatively high benthic productivity, as indicated by a high benthic: planktonic diatom ratio. After tree-line retreat, the optical transparency of the lake increased, and it became more open and exposed, and was thus subject to greater water-column mixing resulting in a higher abundance of diatom phytoplankton, especially heavily silicified Aulocoseira species. The colder climate resulted in a shorter ice-free period, the lake was less productive and there was a loss of aquatic macrophytes. Increased wind-induced mixing following forest retreat had a greater influence on the lake ecosystem than the effects of decreasing organic matter concentration and increased light penetration. © 2011 Springer Science+Business Media B.V.


Englund G.,Umeå University | Ohlund G.,Umeå University | Hein C.L.,Umeå University | Hein C.L.,Climate Impacts Research Center | Diehl S.,Umeå University
Ecology Letters | Year: 2011

The Arrhenius equation has emerged as the favoured model for describing the temperature dependence of consumption in predator-prey models. To examine the relevance of this equation, we undertook a meta-analysis of published relationships between functional response parameters and temperature. We show that, when plotted in lin-log space, temperature dependence of both attack rate and maximal ingestion rate exhibits a hump-shaped relationship and not a linear one as predicted by the Arrhenius equation. The relationship remains significantly downward concave even when data from temperatures above the peak of the hump are discarded. Temperature dependence is stronger for attack rate than for maximal ingestion rate, but the thermal optima are not different. We conclude that the use of the Arrhenius equation to describe consumption in predator-prey models requires the assumption that temperatures above thermal optima are unimportant for population and community dynamics, an assumption that is untenable given the available data. © 2011 Blackwell Publishing Ltd/CNRS.


Hein C.L.,Climate Impacts Research Center | Hein C.L.,Umeå University | Ohlund G.,Umeå University | Englund G.,Umeå University
Diversity and Distributions | Year: 2011

Aim To incorporate dispersal through stream networks into models predicting the future distribution of a native, freshwater fish given climate change scenarios. Location Sweden. Methods We used logistic regression to fit climate and habitat data to observed pike (Esox lucius Linnaeus) distributions in 13,476 lakes. We used GIS to map dispersal pathways through streams. Lakes either (1) contained pike or were downstream from pike lakes, (2) were upstream from pike lakes, but downstream from natural dispersal barriers, or (3) were isolated from streams or were upstream from natural dispersal barriers. We then used climate projections to model future distributions of pike and compared our results with and without including dispersal. Results Given climate and habitat, pike were predicted present in all of 99,249 Swedish lakes by 2100. After accounting for dispersal barriers, we only predicted pike presence in 31,538 lakes. Dispersal barriers most strongly limited pike invasion in mountainous regions, but low connectivity also characterized some relatively flat regions. Mainconclusions The dendritic network structure of streams and interconnected lakes makes a two-dimensional representation of the landscape unsuitable for predicting range shifts of many freshwater organisms. If dispersal through stream networks is not accounted for, predictions of future fish distributions in a warmer climate might grossly overestimate range expansions of warm and cool-water fishes and underestimate range contractions of cold-water fishes. Dispersal through stream networks can be modelled in any region for which a digital elevation model and species occurrence data are available. © 2011 Blackwell Publishing Ltd.


Ohlund G.,Umeå University | Hedstrom P.,Umeå University | Norman S.,Umeå University | Hein C.L.,Umeå University | And 2 more authors.
Proceedings of the Royal Society B: Biological Sciences | Year: 2015

The temperature dependence of predation rates is a key issue for understanding and predicting the responses of ecosystems to climate change. Using a simple mechanistic model, we demonstrate that differences in the relative performances of predator and prey can cause strong threshold effects in the temperature dependence of attack rates. Empirical data on the attack rate of northern pike (Esox lucius) feeding on brown trout (Salmo trutta) confirm this result. Attack rates fell sharply below a threshold temperature of +11°C, which corresponded to a shift in relative performance of pike and brown trout with respect to maximum attack and escape swimming speeds. The average attack speed of pike was an order of magnitude lower than the escape speed of brown trout at 5°C, but approximately equal at temperatures above 11°C. Thresholds in the temperature dependence of ecological rates can create tipping points in the responses of ecosystems to increasing temperatures. Thus, identifying thresholds is crucial when predicting future effects of climate warming. © 2014 The Author(s) Published by the Royal Society. All rights reserved.


Hein C.L.,Climate Impacts Research Center | Hein C.L.,Umeå University | Ohlund G.,Umeå University | Englund G.,Umeå University
Proceedings of the Royal Society B: Biological Sciences | Year: 2014

A major area of current research is to understand how climate change will impact species interactions and ultimately biodiversity. A variety of environmental conditions are rapidly changing owing to climate warming, and these conditions often affect both the strength and outcome of species interactions. We used fish distributions and replicated fish introductions to investigate environmental conditions influencing the coexistence of two fishes in Swedish lakes: brown trout (Salmo trutta) and pike (Esox lucius). A logistic regression model of brown trout and pike coexistence showed that these species coexist in large lakes (more than 4.5 km2), but not in small, warm lakes (annual air temperature more than 0.9-1.5°C). We then explored how climate change will alter coexistence by substituting climate scenarios for 2091-2100 into our model. The model predicts that brown trout will be extirpated from approximately half of the lakes where they presently coexist with pike and from nearly all 9100 lakes where pike are predicted to invade. Context dependency was critical for understanding pike-brown trout interactions, and, given the widespread occurrence of context-dependent species interactions, this aspect will probably be critical foraccurately predicting climate impacts onbiodiversity. © 2013 The Author(s) Published by the Royal Society. All rights reserved.


Hein C.L.,Climate Impacts Research Center | Ohlund G.,Umeå University | Englund G.,Umeå University
Ambio | Year: 2012

Novel communities will be formed as species with a variety of dispersal abilities and environmental tolerances respond individually to climate change. Thus, models projecting future species distributions must account for species interactions and differential dispersal abilities. We developed a species distribution model for Arctic char Salvelinus alpinus, a freshwater fish that is sensitive both to warm temperatures and to species interactions. A logistic regression model using lake area, mean annual air temperature (1961-1990), pike Esox lucius and brown trout Salmo trutta occurrence correctly classified 95 % of 467 Swedish lakes. We predicted that Arctic char will lose 73 % of its range in Sweden by 2100. Predicted extinctions could be attributed both to simulated temperature increases and to projected pike invasions. The Swedish mountains will continue to provide refugia for Arctic char in the future and should be the focus of conservation efforts for this highly valued fish. Copyright © Royal Swedish Academy of Sciences 2012.


Hein C.L.,Climate Impacts Research Center | Hein C.L.,Umeå University
Proceedings. Biological sciences / The Royal Society | Year: 2014

A major area of current research is to understand how climate change will impact species interactions and ultimately biodiversity. A variety of environmental conditions are rapidly changing owing to climate warming, and these conditions often affect both the strength and outcome of species interactions. We used fish distributions and replicated fish introductions to investigate environmental conditions influencing the coexistence of two fishes in Swedish lakes: brown trout (Salmo trutta) and pike (Esox lucius). A logistic regression model of brown trout and pike coexistence showed that these species coexist in large lakes (more than 4.5 km(2)), but not in small, warm lakes (annual air temperature more than 0.9-1.5°C). We then explored how climate change will alter coexistence by substituting climate scenarios for 2091-2100 into our model. The model predicts that brown trout will be extirpated from approximately half of the lakes where they presently coexist with pike and from nearly all 9100 lakes where pike are predicted to invade. Context dependency was critical for understanding pike-brown trout interactions, and, given the widespread occurrence of context-dependent species interactions, this aspect will probably be critical for accurately predicting climate impacts on biodiversity.

Loading Climate Impacts Research Center collaborators
Loading Climate Impacts Research Center collaborators