Clifton College

Clifton, United Kingdom

Clifton College

Clifton, United Kingdom
Time filter
Source Type

Lombaert E.,University of Nice Sophia Antipolis | Guillemaud T.,University of Nice Sophia Antipolis | Thomas C.E.,University of Hull | Lawson Handley L.J.,University of Hull | And 13 more authors.
Molecular Ecology | Year: 2011

Correct identification of the source population of an invasive species is a prerequisite for testing hypotheses concerning the factors responsible for biological invasions. The native area of invasive species may be large, poorly known and/or genetically structured. Because the actual source population may not have been sampled, studies based on molecular markers may generate incorrect conclusions about the origin of introduced populations. In this study, we characterized the genetic structure of the invasive ladybird Harmonia axyridis in its native area using various population genetic statistics and methods. We found that native area of H. axyridis most probably consisted of two geographically distinct genetic clusters located in eastern and western Asia. We then performed approximate Bayesian computation (ABC) analyses on controlled simulated microsatellite data sets to evaluate (i) the risk of selecting incorrect introduction scenarios, including admixture between sources, when the populations of the native area are genetically structured and sampling is incomplete and (ii) the ability ofABCanalysis to minimize such risks by explicitly including unsampled populations in the scenarios compared. Finally,we performed additional ABC analyses on real microsatellite data sets to retrace the origin of biocontrol and invasive populations of H. axyridis, taking into account the possibility that the structured native areamayhave been incompletely sampled.Wefound that the invasive population in eastern North America, which has served as the bridgehead for worldwide invasion by H. axyridis, was probably formed by an admixture between the eastern and western native clusters. This admixture may have facilitated adaptation of the bridgehead population. © 2011 Blackwell Publishing Ltd.

Roy H.E.,UK Center for Ecology and Hydrology | Rhule E.,University of Cambridge | Harding S.,Copenhagen University | Handley L.-J.L.,University of Hull | And 3 more authors.
BioControl | Year: 2011

Harmonia axyridis is an invasive alien predator in many countries across the world. The rapid establishment and spread of this species is of concern because of the threat it poses to biodiversity as a generalist predator. Understanding the mechanisms that contribute to the success of this species as an invader is not only intriguing but also critical to our understanding of the processes governing such invasions. The enemy release hypothesis (ERH) could explain the rapid population growth of many invasive alien species. However, empirical evidence in support of the ERH is lacking. An alternative hypothesis that could explain rapid population growth is evolution of increased competitive ability (EICA). Here we provide an overview of the parasites and pathogens of coccinellids with a particular focus on H. axyridis as a host. We examine the differential susceptibility of host species and highlight the resilience of H. axyridis in comparison to other coccinellids. We recognise the paucity and limitations of available information and suggest that studies, within a life-table framework, comparing life history traits of H. axyridis in both the native and introduced ranges are necessary. We predict that H. axyridis could benefit from both enemy release and EICA within the introduced range but require further empirical evidence. © 2011 International Organization for Biological Control (IOBC).

French M.M.J.,Clifton College
Physics Education | Year: 2011

A Faraday cage is an interesting physical phenomenon where an electromagnetic wave can be excluded from a volume of space by enclosure with an electrically conducting material. The practical application of this in the classroom is to block the signal to a mobile phone by enclosing it in a metal can. The background of the physics behind this is described in some detail, and this is followed by a explanation of some demonstrations and experiments which I have used. © IOP Publishing Ltd.

Kenis M.,Delemont | Adriaens T.,Research Institute for Nature and Forest INBO | Brown P.M.J.,Anglia Ruskin University | Katsanis A.,Delemont | And 12 more authors.
BioControl | Year: 2016

Invasive alien predators are a serious threat to biodiversity worldwide. However, there is no generic method for assessing which local species are most at risk following the invasion of a new predator. The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is an alien in Europe and many other parts of the world where it affects other species of ladybirds through competition for food and intra-guild predation (IGP). Here, we describe a method developed to assess which European ladybird species are most at risk following the invasion of H. axyridis. The three components of the risk assessment are: the likelihood that the assessed native species encounters H. axyridis in the field, the hazard of competition for food, and the IGP hazard. Thirty native European ladybird species were assessed through data obtained from field observations, laboratory experiments and literature reviews. The species that are considered most at risk are found on deciduous trees, have immature stages which are highly vulnerable to IGP by H. axyridis, and are primarily aphidophagous. These species should be the focus of specific studies and possibly conservation actions. The risk assessment method proposed here could be applied to other alien predators which are considered a threat to native species through competition and predation. © 2016 International Organization for Biological Control (IOBC)

Roy H.E.,UK Center for Ecology and Hydrology | Adriaens T.,Research Institute for Nature and Forest INBO | Isaac N.J.B.,UK Center for Ecology and Hydrology | Kenis M.,CABI Europe Switzerland | And 18 more authors.
Diversity and Distributions | Year: 2012

Aim Invasive alien species (IAS) are recognized as major drivers of biodiversity loss, but few causal relationships between IAS and species declines have been documented. In this study, we compare the distribution (Belgium and Britain) and abundance (Belgium, Britain and Switzerland) of formerly common and widespread native ladybirds before and after the arrival of Harmonia axyridis, a globally rapidly expanding IAS. Location Europe Methods We used generalized linear mixed-effects models (GLMMs) to assess the distribution trends of eight conspicuous and historically widespread and common species of ladybird within Belgium and Britain before and after the arrival of H. axyridis. The distribution data were collated largely through public participatory surveys but verified by a recognized expert. We also used GLMMs to model trends in the abundance of ladybirds using data collated through systematic surveys of deciduous trees in Belgium, Britain and Switzerland. Results Five (Belgium) and seven (Britain) of eight species studied show substantial declines attributable to the arrival of H. axyridis. Indeed, the two-spot ladybird, Adalia bipunctata, declined by 30% (Belgium) and 44% (Britain) over 5years after the arrival of H. axyridis. Trends in ladybird abundance revealed similar patterns of declines across three countries. Main conclusion Together, these analyses show H. axyridis to be displacing native ladybirds with high niche overlap, probably through predation and competition. This finding provides strong evidence of a causal link between the arrival of an IAS and decline in native biodiversity. Rapid biotic homogenization at the continental scale could impact on the resilience of ecosystems and severely diminish the services they deliver. © 2012 Blackwell Publishing Ltd.

Roy H.E.,UK Center for Ecology and Hydrology | Handley L.-J.L.,University of Hull | Schonrogge K.,UK Center for Ecology and Hydrology | Poland R.L.,Clifton College | Purse B.V.,UK Center for Ecology and Hydrology
BioControl | Year: 2011

Biological invasions are ecologically and economically costly. Understanding the major mechanisms that contribute to an alien species becoming invasive is seen as essential for limiting the effects of invasive alien species. However, there are a number of fundamental questions that need addressing such as why some communities are more vulnerable to invasion than others and, indeed, why some alien species become widespread and abundant. The enemy release hypothesis (ERH) is widely evoked to explain the establishment and proliferation of an alien species. ERH predicts that an alien species introduced to a new region should experience a decrease in regulation by natural enemies which will lead to an increase in the distribution and abundance of the alien species. At the centre of this theory is the assumption that natural enemies are important regulators of populations. Additionally, the theory implies that such natural enemies have a stronger regulatory effect on native species than they do on alien species in the introduced range, and this disparity in enemy regulation results in increased population growth of the alien species. However, empirical evidence for the role of the ERH in invasion success is lacking, particularly for invertebrates. Many studies equate a reduction in the number of natural enemies associated with an alien species to release without studying population effects. Further insight is required in relation to the effects of specific natural enemies on alien and native species (particularly their ability to regulate populations). We review the role of ecological models in exploring ERH. We suggest that recent developments in molecular technologies offer considerable promise for investigating ERH in a community context. © 2011 International Organization for Biological Control (IOBC).

Loading Clifton College collaborators
Loading Clifton College collaborators