Time filter

Source Type

Ribeiro D.L.,State University Londrina | Ciliao H.L.,State University Londrina | Specian A.F.L.,State University Londrina | Serpeloni J.M.,State University Londrina | And 10 more authors.
Mutagenesis | Year: 2016

Machaerium hirtum (Vell.) Stellfeld (M.hirtum) is a plant known as 'jacarandá-bico-de-pato' whose bark is commonly used against diarrhea, cough and cancer. The aim of this study was to phytochemically characterise the hydroethanolic extract of this plant, investigate its antimutagenic activities using the Ames test and evaluate its effects on cell viability, genomic instability, gene expression and cell protection in human hepatocellular carcinoma cells (HepG2). Antimutagenic activity was assessed by simultaneous pre- and post-treatment with direct and indirect mutagens, such as 4-nitro-o-phenylenediamine (NPD), mitomycin C (MMC), benzo[a]pyrene (B[a]P) and aflatoxin B1 (AFB1), using the Ames test, cytokinesis blocking micronucleus and apoptosis assays. Only 3 of the 10 concentrations evaluated in the MTT assay were cytotoxic in HepG2 cells. Micronucleated or apoptotic cells were not observed with any of the tested concentrations, and there were no mutagenic effects in the bacterial system. However, the Nuclear Division Index and flow cytometry data showed a decrease in cell proliferation. The extract showed an inhibitory effect against direct (NPD) and indirect mutagens (B[a]P and AFB1). Furthermore, pre- and post-treated cells showed significant reduction in the number of apoptotic and micronucleated cells. This effect is not likely to be associated with the modulation of antioxidant genes, as shown by the RT-qPCR results. Six known flavonoids were identified in the hydroethanolic extract of Machaerium hirtum leaves, and their structures were elucidated by spectroscopic and spectrophotometric methods. The presence of the antioxidants apigenin and luteolin may explain these protective effects, because these components can inhibit the formation of reactive species and prevent apoptosis and DNA damage. In conclusion, the M.hirtum extract showed chemopreventive potential and was not hazardous at the tested concentrations in the experiments presented here. Moreover, this extract should be investigated further as a chemopreventive agent. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved.

Bausero M.A.,University of the Republic of Uruguay | Bausero M.A.,Institute of Biological Research Clemente Estable
Cell Stress and Chaperones | Year: 2015

The First Conference of the Latin America Chapter of the Cell Stress Society International (CSSI) organized by CSSI was held in Montevideo, Uruguay, on March 11–14, 2014. The Latin America Chapter of the CSSI (LAC-CSSI) was established at the Workshop on the Molecular Biology of the Stress Response, Porto Alegre, Brazil, May 2012. The chapter’s first meeting took place in the beautiful city of Montevideo and was chaired by the first (LAC-CSSI) elected president Professor María Bausero. Forty-two invited speakers presented their work to more than 100 scientists. The first day of the conference was dedicated to an introductory program for students, young investigators, and participants new to the field of molecular chaperones and the stress response. These seminars were held in the Pasteur Institute of Montevideo and the Faculty of Sciences of the University of the Republic. These institutions were carefully selected to give foreign participants a broad view of the diversity of students and institutions doing research in Uruguay, as well as an opportunity for direct interaction with our scientists and students. Invited speakers for the seminar series were Dr. Wolfgang Schumann, Dr. Cristina Bonorino, Dr. Antonio De Maio, Dr. Ian Brown, Dr. Rafael Radi, Dr. Daniel Ciocca, and Dr. Celia Quijano. The remaining days of the conference took place at the Sheraton Hotel in Montevideo, and the scientific sessions are discussed below. © 2015, Cell Stress Society International.

Discover hidden collaborations