Time filter

Source Type

Columbia, CA, United States

Claremont McKenna College is a private, coeducational liberal arts college and a member of the Claremont Colleges located in Claremont, California, United States.Founded as a men's college in 1946, CMC became co-educational in 1976. Its 69-acre campus is located 35 miles east of Downtown Los Angeles. The college focuses primarily on undergraduate education, but in 2007 it established the Robert Day School of Economics and Finance, which offers a masters program in finance. As of 2013, there are 1,254 undergraduate students and 20 graduate students.Claremont McKenna is ranked tied for eighth out of all liberal arts colleges by U.S. News & World Report. The Princeton Review rated Claremont McKenna 2nd in the nation for happiest students; The Daily Beast placed Claremont McKenna as one of the top 25 most rigorous colleges in the nation; and College Factual has Claremont McKenna as the 14th most selective college in the nation . Wikipedia.

Valdesolo P.,Claremont McKenna College | Graham J.,University of Southern California
Psychological Science

Across five studies, we found that awe increases both supernatural belief (Studies 1, 2, and 5) and intentional-pattern perception (Studies 3 and 4)-two phenomena that have been linked to agency detection, or the tendency to interpret events as the consequence of intentional and purpose-driven agents. Effects were both directly and conceptually replicated, and mediational analyses revealed that these effects were driven by the influence of awe on tolerance for uncertainty. Experiences of awe decreased tolerance for uncertainty, which, in turn, increased the tendency to believe in nonhuman agents and to perceive human agency in random events. © The Author(s) 2013. Source

Morhardt J.E.,Claremont McKenna College
Business Strategy and the Environment

All material related to environmental and social performance on the corporate internet sites of 454 Fortune Global 500 and Fortune 1000 companies in 25 industrial sectors was analyzed using the Pacific Sustainability Index. Maximum scores for individual sectors were 20-75 percent of the total possible, highest in the largest and most environmentally sensitive sectors and ranging generally linearly, as shown by plotting score versus rank, down to nearly zero in every sector. None of the variation in score is explained by corporate revenue in the Asian and European firms in this sample (revenues greater than about $9 billion), but there is a very weak correlation between score and revenue for American firms of this size, and a stronger one when Fortune 1000 companies (all American) with revenues smaller than this are included, suggesting that, as corporate size reaches a certain threshold, sustainability reporting becomes independent of it. © 2009 John Wiley & Sons, Ltd and ERP Environment. Source

Agency: NSF | Branch: Standard Grant | Program: | Phase: ATMOSPHERIC CHEMISTRY | Award Amount: 142.54K | Year: 2015

This project is investigating the potential for agricultural emissions of nitrogen and sulfur gases from sources such as dairy farms, piggeries, and other animal production sources to lead to the formation of very small particles in the atmosphere. Previous studies have shown that gas phase compounds related to waste management practices from animal agriculture could influence the formation of atmospheric particles. This project includes laboratory, field and modeling studies to investigate the environmental fate of nitrogen and sulfur compounds from these sources.

An environmental chamber will be used to quantify secondary aerosol formation potentials at different relative humidities and temperatures for select amines (diethylamine (DEA), trimethylamine (TMA), butylamine (BA), a diamine, or NH3) oxidized in the presence of an organosulfur compound (methanethiol, dimethylsulfide (DMS), or dimethyldisulfide (DMDS)) or hydrogen sulfide. The investigators will perform field sampling of particulate matter and precursors at agricultural operations in Kentucky at the USDA-Agricultural Research Station (ARS) laboratory to determine the impact of elevated amine and sulfur concentrations on atmospheric chemistry.

Kinetic modeling calculations will help clarify the sequence of chemical reactions responsible for the data seen in laboratory experiments. This will, in turn, help explain emission rates observed in field observations. The investigators expect to elucidate the atmospheric oxidation routes for reduced sulfur compounds and amines. Empirical estimates of the aerosol formation potential of key agricultural emissions will be developed for use in predicting local and regional air quality impacts and emissions inventories of the reduced nitrogen and sulfur species will be developed as an additional input to air quality models.

Agency: NSF | Branch: Continuing grant | Program: | Phase: BIOLOGICAL OCEANOGRAPHY | Award Amount: 369.46K | Year: 2014

This CAREER grant uses a combination of laboratory studies, computer modeling, and field experiments to test the relative influence of temperature stress and energy limitation on the upper vertical limit of an intertidal barnacle (Balanus glandula). Understanding the mechanisms by which temperature limits an organisms success is critical to generating accurate predictions of the effect of climate change on biological systems. Past work in this field has emphasized the direct physiological stress of extreme temperatures, but it is unclear if such extreme conditions limit species in the wild. Alternately, animals may simply lack enough energy to defend against thermal extremes that they could otherwise tolerate. This work has three main objectives: 1) to extend an existing modeling approach in physiology (Dynamic Energy Budget) for use with intertidal species, which alternate daily between marine and terrestrial conditions, 2) to use the model, in conjunction with field experiments, to test the hypothesis that energy limitation, rather than direct thermal stress, limits the success of B. glandula in the wild; and, 3) to use field and laboratory measurements to explore how thermal tolerance and success differ between barnacle populations from California and Washington. Altogether, these projects will improve our understanding of the thermal physiology of B. glandula, specifically, and of the role of energy limitation in thermal stress, more generally.

The integrated education plan of this CAREER grant contains three specific objectives: 1) to use research opportunities to attract and retain students in biology majors, 2) to improve the retention and performance of women and minority undergraduates in an introductory biology course, and 3) to improve the understanding of science by the general college population. The grant activities will include: generating new research opportunities for undergraduate and high school students, the piloting of a research experience program for sophomore-level students, the establishment of a peer-study program for students in an introductory biology course, and the development of a new course for non-science majors that emphasizes scientific literacy. The educational effectiveness of these programs will be rigorously tested and the results will inform the future teaching activities of the PI, her department, and the greater academic science community. The broader impacts of this CAREER grant will be 1) broadening the participation of women and under-represented minorities in science, 2) improving biology education and the educational skills of the PI, 3) increasing public scientific literacy, and 4) informing our understanding of the biological consequences of global climate change, a critical societal need.

Agency: NSF | Branch: Continuing grant | Program: | Phase: Genetic Mechanisms | Award Amount: 339.47K | Year: 2015

This project seeks to understand how selfish genetic elements can alter patterns of genetic inheritance at the molecular level. In the jewel wasp, Nasonia vitripennis, a special so-called B chromosome can induce elimination of all the genes inherited from the paternal parent, producing progeny that contain genes just from the mothers genome, along with the B chromosome itself. How this happens is not clear, but this research should provide important clues that might shed light on how selfish DNA elements promote their own propagation in this and other systems. The project will provide training opportunities for undergraduate students and a postdoctoral researcher. Data generated by the project will be used for original research in a new module to be incorporated by the PI into his developmental biology course; the new course will provide the students with experience in both bioinformatics and fluorescence microscopy approaches. The course module will also be incorporated into the biology curricula of two-year colleges in the Los Angeles area. A scientific outcome of the collective efforts of students in these courses will be to establish a new gene expression resource for the research community. Educational outcomes of engaging students in research are expected to include: increased student interest and conceptual understanding of scientific inquiry; higher rates of retention as biology majors; higher academic performance of two-year college students in subsequent upper-level biology courses; and enhanced rates of transfer of students from two- to four-year institutions.

Normally, all parts of the eukaryotic genome function in unison to insure normal organismal function. However, in some cases, individual chromosome regions and even whole chromosomes can alter normal reproductive processes in order to become transmitted at abnormally high levels to new progeny at the expense of the genome as a whole. Currently little is known about how this condition, known as intragenomic conflict, occurs at the molecular level. This project will employ modern molecular and cytological methods to investigate how a supernumerary (extra) B chromosome completely destroys the paternal genome in the jewel wasp Nasonia vitripennis, thereby achieving near-perfect B chromosome transmission. Preliminary data suggest that genome elimination is targeted through a mechanism involving differences in the configuration of chromatin associated with the paternal vs. maternal genomes. Experimental approaches will test this hypothesis as follows: (1) define how the B chromosome and the paternal genome differ in their chromatin states when the paternal genome undergoes elimination; (2) determine whether and how the B chromosome initially alters the chromatin state of the paternal genome; and (3) explore the role of novel B chromosome-expressed non-coding RNAs as potential effectors of paternal genome elimination. This research will provide insights into unknown aspects of chromatin dynamics, address whether genome elimination by the selfish B element is mechanistically distinct from genome elimination events in other organisms, and help to discern how intragenomic conflict can arise from a functionally unified genome.

Discover hidden collaborations