Time filter

Source Type

Claremont, CA, United States

Lipshutz B.H.,University of California at Santa Barbara | Boskovic Z.,University of California at Santa Barbara | Crowe C.S.,University of California at Santa Barbara | Davis V.K.,Claremont McKenna and Pitzer Colleges | And 3 more authors.
Journal of Chemical Education | Year: 2013

The two laboratory reactions focus on teaching several concepts associated with green chemistry. Each uses a commercial, nontoxic, and biodegradable surfactant, TPGS-750-M, to promote organic reactions within the lipophilic cores of nanoscale micelles in water. These experiments are based on work by K. Barry Sharpless (an azide-alkyne "click" reaction) and Robert Grubbs (an olefin cross-metathesis reaction); both are suitable for an undergraduate organic laboratory. The copper-catalyzed azide-alkyne [3 + 2] cycloaddition of benzyl azide and 4-tolylacetylene is very rapid: the triazole product is readily isolated by filtration and is characterized by thin-layer chromatography and melting point analysis. The ruthenium-catalyzed olefin cross-metathesis reaction of benzyl acrylate with 1-hexene is readily monitored by thin-layer chromatography and gas chromatography. The metathesis experiment comparatively evaluates the efficacy of a TPGS-750-M/water medium relative to a traditional reaction performed in dichloromethane (a common solvent used for olefin metathesis). © 2013 The American Chemical Society and Division of Chemical Education, Inc.

Radman-Livaja M.,University of Massachusetts Medical School | Quan T.K.,University of California at Santa Cruz | Valenzuela L.,University of California at Santa Cruz | Armstrong J.A.,Claremont McKenna and Pitzer Colleges | And 7 more authors.
PLoS Genetics | Year: 2012

Chd proteins are ATP-dependent chromatin remodeling enzymes implicated in biological functions from transcriptional elongation to control of pluripotency. Previous studies of the Chd1 subclass of these proteins have implicated them in diverse roles in gene expression including functions during initiation, elongation, and termination. Furthermore, some evidence has suggested a role for Chd1 in replication-independent histone exchange or assembly. Here, we examine roles of Chd1 in replication-independent dynamics of histone H3 in both Drosophila and yeast. We find evidence of a role for Chd1 in H3 dynamics in both organisms. Using genome-wide ChIP-on-chip analysis, we find that Chd1 influences histone turnover at the 5′ and 3′ ends of genes, accelerating H3 replacement at the 5′ ends of genes while protecting the 3′ ends of genes from excessive H3 turnover. Although consistent with a direct role for Chd1 in exchange, these results may indicate that Chd1 stabilizes nucleosomes perturbed by transcription. Curiously, we observe a strong effect of gene length on Chd1's effects on H3 turnover. Finally, we show that Chd1 also affects histone modification patterns over genes, likely as a consequence of its effects on histone replacement. Taken together, our results emphasize a role for Chd1 in histone replacement in both budding yeast and Drosophila melanogaster, and surprisingly they show that the major effects of Chd1 on turnover occur at the 3′ ends of genes. © 2012 Radman-Livaja et al.

Discover hidden collaborations