City West Water

Bridgewater, Australia

City West Water

Bridgewater, Australia
SEARCH FILTERS
Time filter
Source Type

Mainali B.,University of Technology, Sydney | Pham T.T.N.,University of Technology, Sydney | Ngo H.H.,University of Technology, Sydney | Guo W.,University of Technology, Sydney | And 4 more authors.
Science of the Total Environment | Year: 2013

This study investigates the community perception of household laundry as a new end use of recycled water in three different locations of Australia through a face to face questionnaire survey (n=478). The study areas were selected based on three categories of (1) non-user, (2) perspective user and (3) current user of recycled water. The survey results indicate that significantly higher number (70%) of the respondents supported the use of recycled water for washing machines (χ2=527.40, df=3; p=0.000). Significant positive correlation between the overall support for the new end use and the willingness of the respondents to use recycled water for washing machine was observed among all users groups (r=0.43, p=0.000). However, they had major concerns regarding the effects of recycled water on the aesthetic appearance of cloth, cloth durability, machine durability, odour of the recycled water and cost along with the health issues. The perspective user group had comparatively more reservations and concerns about the effects of recycled water on washing machines than the non-users and the current users (χ2=52.73, df=6; p=0.000). Overall, community from all three study areas are willing to welcome this new end use as long as all their major concerns are addressed and safety is assured. © 2013 Elsevier B.V.


Mainali B.,University of Technology, Sydney | Pham T.T.N.,University of Technology, Sydney | Ngo H.H.,University of Technology, Sydney | Guo W.,University of Technology, Sydney | And 5 more authors.
Science of the Total Environment | Year: 2014

Laundry is a potential new end use of recycled water in dual reticulation systems. Generally, the community is willing to accept this new end use if it can meet the concerns on health issues, durability of washing machine, cloth quality and aesthetic appearance. This study addresses all these major concerns thereby assisting in the introduction and promotion of this new end use in the existing and proposed dual reticulation systems. Five representative cloth materials were selected for washing in tap water and in recycled water for up to 50 wash cycles for comparative studies. The tearing/tensile strength tests were used for the assessment of cloth durability. ANOVA one way test was applied for the significance analysis (Tukey's test p. <. 0.05) which indicated that there is no significant change in the tensile/tearing strengths of washed cloth samples. Scanning electron microscope (SEM) images of the washed cloth samples found no distinct change in surface morphology. Textile colour analysis (CIEDE2000) analysed the variation in colour of the washed cloth samples and showed that the change in colour {increment}E ranges from 0-1 revealing no visible difference in colour of cloth samples. Langelier Saturation Index (LSI) was used as the indicator for predicting corrosive/scaling potential of recycled water. The LSI values ranged from +. 0.5 to - 0.5, indicating no corrosive or scaling potential of recycled water. The microbiological study of the cloth samples washed in recycled water indicated that there was no contamination with representative bacteria. As the recycled water has similar effects like tap water on cloth and washing machine, it is safe to use for laundry. © 2013 Elsevier B.V.


Chen Z.,University of Technology, Sydney | Ngo H.H.,University of Technology, Sydney | Guo W.,University of Technology, Sydney | Lim R.,University of Technology, Sydney | And 5 more authors.
Science of the Total Environment | Year: 2014

Nowadays, recycled water has provided sufficient flexibility to satisfy short-term freshwater needs and increase the reliability of long-term water supplies in many water scarce areas, which becomes an essential component of integrated water resources management. However, the current applications of recycled water are still quite limited that are mainly associated with non-potable purposes such as irrigation, industrial uses, toilet flushing and car washing. There is a large potential to exploit and develop new end uses of recycled water in both urban and rural areas. This can greatly contribute to freshwater savings, wastewater reduction and water sustainability. Consequently, the paper identified the potentials for the development of three recycled water new end uses, household laundry, livestock feeding and servicing, and swimming pool, in future water use market. To validate the strengths of these new applications, a conceptual decision analytic framework was proposed. This can be able to facilitate the optional management strategy selection process and thereafter provide guidance on the future end use studies within a larger context of the community, processes, and models in decision-making. Moreover, as complex evaluation criteria were selected and taken into account to narrow down the multiple management alternatives, the methodology can successfully add transparency, objectivity and comprehensiveness to the assessment. Meanwhile, the proposed approach could also allow flexibility to adapt to particular circumstances of each case under study. © 2013 Elsevier B.V.


PubMed | City West Water, University of Technology, Sydney, Sydney Olympic Park Authority, Port Macquarie Hastings Council and 2 more.
Type: | Journal: The Science of the total environment | Year: 2014

With a constantly growing population, water scarcity becomes the limiting factor for further social and economic growth. To achieve a partial reduction in current freshwater demands and lessen the environmental loadings, an increasing trend in the water market tends to adopt recycled water for household laundries as a new recycled water application. The installation of a small pre-treatment unit for water purification can not only further improve the recycled water quality, but also be viable to enhance the public confidence and acceptance level on recycled water consumption. Specifically, this paper describes column experiments conducted using a 550 mm length bed of zeolite media as a one-dimensional flow reactor. The results show that the zeolite filter system could be a simple low-cost pre-treatment option which is able to significantly reduce the total hardness level of recycled water via effective ion exchange. Additionally, depending on the quality of recycled water required by end users, a new by-pass controller using a three-level operation switching mechanism is introduced. This approach provides householders sufficient flexibility to respond to different levels of desired recycled water quality and increase the reliability of long-term system operation. These findings could be beneficial to the smooth implementation of new end uses and expansion of the potential recycled water market. The information could also offer sound suggestions for future research on sustainable water management and governance.


PubMed | City West Water, University of Technology, Sydney, Sydney Olympic Park Authority, Port Macquarie Hastings Council and 2 more.
Type: | Journal: The Science of the total environment | Year: 2014

Nowadays, recycled water has provided sufficient flexibility to satisfy short-term freshwater needs and increase the reliability of long-term water supplies in many water scarce areas, which becomes an essential component of integrated water resources management. However, the current applications of recycled water are still quite limited that are mainly associated with non-potable purposes such as irrigation, industrial uses, toilet flushing and car washing. There is a large potential to exploit and develop new end uses of recycled water in both urban and rural areas. This can greatly contribute to freshwater savings, wastewater reduction and water sustainability. Consequently, the paper identified the potentials for the development of three recycled water new end uses, household laundry, livestock feeding and servicing, and swimming pool, in future water use market. To validate the strengths of these new applications, a conceptual decision analytic framework was proposed. This can be able to facilitate the optional management strategy selection process and thereafter provide guidance on the future end use studies within a larger context of the community, processes, and models in decision-making. Moreover, as complex evaluation criteria were selected and taken into account to narrow down the multiple management alternatives, the methodology can successfully add transparency, objectivity and comprehensiveness to the assessment. Meanwhile, the proposed approach could also allow flexibility to adapt to particular circumstances of each case under study.


PubMed | City West Water, Gold Coast Mail Center, University of Technology, Sydney, Sydney Olympic Park Authority and Port Macquarie Hastings Council
Type: | Journal: The Science of the total environment | Year: 2014

Laundry is a potential new end use of recycled water in dual reticulation systems. Generally, the community is willing to accept this new end use if it can meet the concerns on health issues, durability of washing machine, cloth quality and aesthetic appearance. This study addresses all these major concerns thereby assisting in the introduction and promotion of this new end use in the existing and proposed dual reticulation systems. Five representative cloth materials were selected for washing in tap water and in recycled water for up to 50 wash cycles for comparative studies. The tearing/tensile strength tests were used for the assessment of cloth durability. ANOVA one way test was applied for the significance analysis (Tukeys test p<0.05) which indicated that there is no significant change in the tensile/tearing strengths of washed cloth samples. Scanning electron microscope (SEM) images of the washed cloth samples found no distinct change in surface morphology. Textile colour analysis (CIEDE2000) analysed the variation in colour of the washed cloth samples and showed that the change in colour E ranges from 0-1 revealing no visible difference in colour of cloth samples. Langelier Saturation Index (LSI) was used as the indicator for predicting corrosive/scaling potential of recycled water. The LSI values ranged from +0.5 to -0.5, indicating no corrosive or scaling potential of recycled water. The microbiological study of the cloth samples washed in recycled water indicated that there was no contamination with representative bacteria. As the recycled water has similar effects like tap water on cloth and washing machine, it is safe to use for laundry.


PubMed | City West Water, Land, Water & Health Pty Ltd, CREH and 2 more.
Type: Evaluation Studies | Journal: The Science of the total environment | Year: 2015

In this study, three full-scale, operational stormwater harvesting systems located in Melbourne, Australia were evaluated with respect to water yields; pathogen removal performance by analysis of native surrogate data (Escherichiacoli, somatic coliphages and Clostridium perfringens); and potential human health risk associated with exposures to faecal pathogens using Quantitative Microbial Risk Assessment (QMRA). The water yield assessment confirmed variation between design and measured yields. Faecal contamination of urban stormwater was site specific and variable. Different treatment removal performance was observed between each of the microbial surrogates and varied between event and baseline conditions, with negligible removal of viruses during event conditions. Open storages that provide a habitat for waterfowl may lead to elevated risk due to the potential for zoonotic transmission. Nevertheless, in the Australian urban setting studied, the potential for human faecal contamination of the separated stormwater system was a critical driver of risk. If the integrity of the sewerage system can be ensured, then predicted health risks are dramatically reduced.


Nguyen K.A.,Griffith University | Stewart R.A.,Griffith University | Zhang H.,Griffith University | Jones C.,City West Water
Applied Soft Computing Journal | Year: 2015

Abstract Over half of the world's population will live in urban areas in the next decade, which will impose significant pressure on water security. The advanced management of water resources and their consumption is pivotal to maintaining a sustainable water future. To contribute to this goal, the aim of this study was to develop an autonomous and intelligent system for residential water end-use classification that could interface with customers and water business managers via a user-friendly web-based application. Water flow data collected directly from smart water metres connected to dwellings includes both single (e.g., a shower event occurring alone) and combined (i.e., an event that comprises several overlapping single events) water end use events. The authors recently developed an intelligent application called Autoflow which served as a prototype tool to solve the complex problem of autonomously categorising residential water consumption data into a registry of single and combined events. However, this first prototype application achieved overall recognition accuracy of 85%, which is not sufficient for a commercial application. To improve this accuracy level, a larger dataset consisting of over 82,000 events from over 500 homes in Melbourne and South-east Queensland, Australia, were employed to derive a new single event recognition method employing a hybrid combination of Hidden Markov Model (HMM), Artificial Neural Networks (ANN) and the Dynamic Time Warping (DTW) algorithm. The classified single event registry was then used as the foundations of a sophisticated hybrid ANN-HMM combined event disaggregation module, which was able to strip apart concurrently occurring end use events. The new hybrid model's recognition accuracy ranged from 85.9% to 96.1% for single events and 81.8-91.5% for combined event disaggregation, which was a 4.9% and 8.0% improvement, respectively, when compared to the first prototype model. The developed Autoflow tool has far-reaching implications for enhanced urban water demand planning and management, sustained customer behaviour change through more granular water conservation awareness, and better customer satisfaction with water utility providers. © 2015 Elsevier B.V. All rights reserved.


Inamdar P.M.,Victoria University of Melbourne | Inamdar P.M.,CSIRO | Cook S.,CSIRO | Sharma A.K.,CSIRO | And 3 more authors.
Journal of Environmental Management | Year: 2013

There is the need to re-configure current urban water systems to achieve the objective of sustainable water sensitive cities. Stormwater represents a valuable alternative urban water source to reduce pressure on fresh water resources, and to mitigate the environmental impact of urban stormwater runoff. The selection of suitable urban stormwater harvesting sites is generally based on the judgement of water planners, who are faced with the challenge of considering multiple technical and socio-economic factors that influence the site suitability. To address this challenge, the present study developed a robust GIS based screening methodology for identifying potentially suitable stormwater harvesting sites in urban areas as a first pass for then more detailed investigation. The study initially evaluated suitability based on the match between harvestable runoff and demand through a concept of accumulated catchments. Drainage outlets of these accumulated catchments were considered as potential stormwater harvesting sites. These sites were screened and ranked under screening parameters namely demand, ratio of runoff to demand and weighted demand distance. The methodology described in this paper was successfully applied to a case study in Melbourne, Australia in collaboration with the local water utility. The methodology was found to be effective in supporting the selection of priority sites for stormwater harvesting schemes, as it provided the basis to identify, short-list and rank sites for further detailed investigation. The rapid identification of suitable sites for stormwater harvesting can assist planners in prioritising schemes in areas that will have the most impact on reducing potable water demand. © 2013 Elsevier Ltd.


PubMed | City West Water, University of Queensland and Victoria University of Melbourne
Type: Journal Article | Journal: Membranes | Year: 2014

An innovative concept is proposed to recover ammonia from industrial wastewater using a molecular sieve silica membrane in pervaporation (PV), benchmarked against vacuum membrane distillation (VMD). Cobalt and iron doped molecular sieve silica-based ceramic membranes were evaluated based on the ammonia concentration factor downstream and long-term performance. A modified low-temperature membrane evaluation system was utilized, featuring the ability to capture and measure ammonia in the permeate. It was found that the silica membrane with confirmed molecular sieving features had higher water selectivity over ammonia. This was due to a size selectivity mechanism that favoured water, but blocked ammonia. However, a cobalt doped silica membrane previously treated with high temperature water solutions demonstrated extraordinary preference towards ammonia by achieving up to a 50,000 mg/L ammonia concentration (a reusable concentration level) measured in the permeate when fed with 800 mg/L of ammonia solution. This exceeded the concentration factor expected by the benchmark VMD process by four-fold, suspected to be due to the competitive adsorption of ammonia over water into the silica structure with pores now large enough to accommodate ammonia. However, this membrane showed a gradual decline in selectivity, suspected to be due to the degradation of the silica material/pore structure after several hours of operation.

Loading City West Water collaborators
Loading City West Water collaborators