Time filter

Source Type

Racine, WI, United States

Quilliam R.S.,University of Stirling | Kinzelman J.,City of Racine | Brunner J.,City of Racine | Oliver D.M.,University of Stirling
Journal of Environmental Management | Year: 2015

Understanding and quantifying the trade-off between the requirement for clean safe bathing water and beaches and their wider ecosystem services is central to the aims of the European Union (EU) Marine Strategy Framework Directive (MSFD), and vital for the sustainability and economic viability of designated bathing waters. Uncertainty surrounding the impacts of ensuing bathing water policy transitions, e.g. the EU revised Bathing Waters Directive (rBWD), puts new urgency on our need to understand the importance of natural beach assets for human recreation, wildlife habitat and for protection from flooding and erosion. However, managing coastal zones solely in terms of public health could have potentially negative consequences on a range of other social and cultural ecosystem services, e.g. recreation. Improving our knowledge of how bathing waters, surrounding beach environments and local economies might respond to shifts in management decisions is critical in order to inform reliable decision-making, and to evaluate future implications for human health. In this paper we explore the conflicts and trade-offs that emerge at public beach environments, and propose the development of an evaluative framework of viable alternatives in environmental management whereby bathing waters are managed for their greatest utility, driven by identifying the optimal ecosystem service provision at any particular site. © 2015 Elsevier Ltd.

Whitman R.L.,Great Lakes Science Center | Harwood V.J.,University of South Florida | Edge T.A.,Environment Canada | Nevers M.B.,Great Lakes Science Center | And 15 more authors.
Reviews in Environmental Science and Biotechnology | Year: 2014

Beach sand is a habitat that supports many microbes, including viruses, bacteria, fungi and protozoa (micropsammon). The apparently inhospitable conditions of beach sand environments belie the thriving communities found there. Physical factors, such as water availability and protection from insolation; biological factors, such as competition, predation, and biofilm formation; and nutrient availability all contribute to the characteristics of the micropsammon. Sand microbial communities include autochthonous species/phylotypes indigenous to the environment. Allochthonous microbes, including fecal indicator bacteria (FIB) and waterborne pathogens, are deposited via waves, runoff, air, or animals. The fate of these microbes ranges from death, to transient persistence and/or replication, to establishment of thriving populations (naturalization) and integration in the autochthonous community. Transport of the micropsammon within the habitat occurs both horizontally across the beach, and vertically from the sand surface and ground water table, as well as at various scales including interstitial flow within sand pores, sediment transport for particle-associated microbes, and the large-scale processes of wave action and terrestrial runoff. The concept of beach sand as a microbial habitat and reservoir of FIB and pathogens has begun to influence our thinking about human health effects associated with sand exposure and recreational water use. A variety of pathogens have been reported from beach sands, and recent epidemiology studies have found some evidence of health risks associated with sand exposure. Persistent or replicating populations of FIB and enteric pathogens have consequences for watershed/beach management strategies and regulatory standards for safe beaches. This review summarizes our understanding of the community structure, ecology, fate, transport, and public health implications of microbes in beach sand. It concludes with recommendations for future work in this vastly under-studied area. © 2014 Springer Science+Business Media Dordrecht.

Discover hidden collaborations