Entity

Time filter

Source Type

New York City, NY, United States

The City College of the City University of New York is a senior college of the City University of New York in New York City. It is the oldest of City University's twenty-three institutions of higher learning. City College's thirty-five acre Manhattan campus along Convent Avenue from 130th Street to 141st Street is on a hill overlooking Harlem; its neo-Gothic campus was mostly designed by George Browne Post, and many of its buildings are landmarks.CCNY was the first free public institution of higher education in the United States and is considered the flagship campus of the CUNY public university system. The college counts 10 winners of the Nobel Prize among its alumni, the latest being Harlem native John O'Keefe . Wikipedia.


Anderson R.P.,City College of New York
Annals of the New York Academy of Sciences | Year: 2013

Predicting species geographic distributions in the future is an important yet exceptionally challenging endeavor. Overall, it requires a two-step process: (1) a niche model characterizing suitability, applied to projections of future conditions and linked to (2) a dispersal/demographic simulation estimating the species' future occupied distribution. Despite limitations, for the vast majority of species, correlative approaches are the most feasible avenue for building niche models. In addition to myriad technical issues regarding model building, researchers should follow critical principles for selecting predictor variables and occurrence data, demonstrating effective performance in prediction across space, and extrapolating into nonanalog conditions. Many of these principles relate directly to the niche space, dispersal/demographic noise, biotic noise, and human noise assumptions defined here. Issues requiring progress include modeling interactions between abiotic variables, integrating biotic variables, considering genetic heterogeneity, and quantifying uncertainty. Once built, the niche model identifying currently suitable conditions must be processed to approximate the areas that the species occupies. That estimate serves as a seed for the simulation of persistence, dispersal, and establishment in future suitable areas. The dispersal/demographic simulation also requires data regarding the species' dispersal ability and demography, scenarios for future land use, and the capability of considering multiple interacting species simultaneously. © 2013 New York Academy of Sciences. Source


Tarbell J.M.,City College of New York
Cardiovascular Research | Year: 2010

The shear stress of flowing blood on the surfaces of endothelial cells that provide the barrier to transport of solutes and water between blood and the underlying tissue modulates the permeability to solutes and the hydraulic conductivity. This review begins with a discussion of transport pathways across the endothelium and then considers the experimental evidence from both in vivo and in vitro studies that shows an influence of shear stress on endothelial transport properties after both acute (minutes to hours) and chronic (hours to days) changes in shear stress. Next, the effects of shear stress on individual transport pathways (tight junctions, adherens junctions, vesicles and leaky junctions) are described, and this information is integrated with the transport experiments to suggest mechanisms controlling both acute and chronic responses of transport properties to shear stress. The review ends with a summary of future research challenges. © 2010 The Author. Source


Liu H.,City College of New York
Geotextiles and Geomembranes | Year: 2012

The service limit-state design of Geosynthetic-Reinforced Soil (GRS) retaining walls requires accurate estimation of the lateral facing displacement at the end of construction as well as after years of creep. However, before a simplistic but rational methodology for this purpose can be developed, mechanisms governing the short-term and long-term lateral facing displacements must be clarified. In this study, extensive Finite Element analyses were carried out using a calibrated Finite Element procedure to investigate and attempt to better understand the lateral facing displacements of segmental GRS walls at the end of construction and after 10 years of creep under constant gravity loading. The study found that among the two main components of lateral facing displacement, the deformation of reinforced soil zone was largely governed by reinforcement spacing and reinforcement stiffness, while the influence of reinforcement length was negligible. Soil stiffness also played an important role in the lateral deformation if large reinforcement stiffness and/or small reinforcement spacing were used. In contrast, reinforcement length to a very large extent determined the lateral displacement at the back of reinforced soil zone. With constant reinforcement length, the reinforced soil zone could be treated as a deep beam. The displacement at the back of reinforced soil zone was then determined by the earth pressure, beam depth, and beam stiffness, the last of which is a function of soil stiffness, reinforcement spacing, reinforcement stiffness, and facing stiffness. The study found that isochrone stiffness can be used to interpret the lateral deformation of GRS walls under working stress condition. © 2011 Elsevier Ltd. Source


Goldfarb M.,City College of New York
Cellular and Molecular Life Sciences | Year: 2012

Voltage-gated sodium channels mediate inward current of action potentials upon membrane depolarization of excitable cells. The initial transient sodium current is restricted to milliseconds through three distinct channelinactivating and blocking mechanisms. All pore-forming alpha subunits of sodium channels possess structural elements mediating fast inactivation upon depolarization and recovery within milliseconds upon membrane repolarization. Accessory subunits modulate fast inactivation dynamics, but these proteins can also limit current by contributing distinct inactivation and blocking particles. A-type isoforms of fibroblast growth factor homologous factors (FHFs) bear a particle that induces long-term channel inactivation, while sodium channel subunit Navβ4 employs a blocking particle that rapidly dissociates upon membrane repolarization to generate resurgent current. Despite their different physiological functions, the FHF and Navβ4 particles have similarity in amino acid composition and mechanisms for docking within sodium channels. The three competing channel-inactivating and blocking processes functionally interact to regulate a neurons intrinsic excitability. © 2011 Springer Basel AG. Source


Pontzer H.,City College of New York
Exercise and Sport Sciences Reviews | Year: 2015

The human body adapts dynamically to maintain total energy expenditure (TEE) within a narrow physiological range. Rather than increasing with physical activity in a dose-dependent manner, experimental and ecological evidence suggests the hypothesis that TEE is a relatively constrained product of our evolved physiology. © 2015 by the American College of Sports Medicine. Source

Discover hidden collaborations