Entity

Time filter

Source Type

Saint Pierre La, France

Over the centuries, local communities have shaped atypical rules to deal with the uncertainty of their environment. They have developed complex prototypes for flexible overlapping institutions and arrangements to adapt their rules and uses to their uncertain environment. Today, this indigenous way of flexibly institutionalizing access rules could provide blueprints for dealing with uncertainty issues resulting from global change as well as designing practical guidelines for implementing resilient management. However, transforming indigenous skills for developing institutional flexibility into operational management rules that are appropriate in the current environmental and socioeconomic context is a huge challenge. However, communities could easily succeed in this reframing because the structuring principles of institutional flexibility are embedded in their mind frame. In this perspective, a participatory modeling process was applied in Senegal to explore, first, how to design a methodological platform to enable local people to shape different forms of environmental management and policies they consider appropriate in the new context of environmental uncertainty by drawing on their own attitudes to environmental management. Second, to increase the value of such "self-designed" outputs in improving knowledge about, and improving, the practical management of uncertainty, especially in drylands. © 2013 by the author(s). Source


Liang J.,West Virginia University | Picard N.,CIRAD
Forest Science | Year: 2013

The Matrix model uses transition matrices to predict future plant and animal population structures. Having been used to study the dynamics of forests all over the world, the Matrix model is thriving in forestry, with applications covering a wide array of areas. Despite its extensive application in forestry, the Matrix model is still suffering from a lack of due attention and appropriate understanding, especially on its advantages and limitations in comparison with those of other forest dynamics models. To facilitate further research and applications, a synthetic review of Matrix models is provided here with an emphasis on its mathematical properties and relationship with other forest dynamics models. In this article, we first introduce the general structure of Matrix models and its representation of forest dynamics components, i.e., upgrowth, mortality, and recruitment. Then, we summarize key properties of Matrix models, including basic assumptions, density dependence, size class width and time step, and the estimation of forest dynamics components will be summarized. Next, we evaluate advantages and limitations of the Matrix model and its relationship with other forest dynamics models. Finally, we share our perspective on the major challenges and future outlooks of Matrix models. © 2013 by the Society of American Foresters. Source


Teschke R.,Goethe University Frankfurt | Lebot V.,CIRAD
Food and Chemical Toxicology | Year: 2011

Rare cases of hepatotoxicity emerged with the use of kava drugs and dietary supplements prepared from rhizomes and roots of the South Pacific plant kava (Piper methysticum). Their psychoactive, anxiolytic, relaxing, and recreational ingredients are the kavalactones kavain, dihydrokavain, methysticin, dihydromethysticin, yangonin, and desmethoxyyangonin, but there is little evidence that these kavalactones or the non-kavalactones pipermethystine and flavokavain B are the culprits of the adverse hepatic reactions. It rather appears that poor quality of the kava material was responsible for the liver toxicity. Analysis of existing kava quality standardizations with focus on chemical, agricultural, manufacturing, nutritional, regulatory, and legislation backgrounds showed major shortcomings that could easily explain quality problems. We therefore suggest a uniform, internationally accepted device for kava quality standardizations that are in the interest of the consumers because of safety reasons and will meet the expectations of kava farmers, pharmaceutical manufacturers, regulators of agencies, and legislators. The initial step resides in the establishment of Pan-Pacific kava quality legislation as an important part of the proposed Kava Quality Standardization Code. In conclusion, a sophisticated approach to establish kava quality standardizations is needed for safe human use of kava as relaxing traditional beverages, the anxiolytic drugs, and recreational dietary supplements. © 2011 Elsevier Ltd. Source


Herrmann L.,Deakin University | Lesueur D.,CIRAD
Applied Microbiology and Biotechnology | Year: 2013

The interest in biofertilizers is increasing and so is the potential for their use in sustainable agriculture. However, many of the products that are currently available worldwide are often of very poor quality, resulting in the loss of confidence from farmers. The formulation of an inoculant is a crucial multistep process that should result in one or several strains of microorganisms included in a suitable carrier, providing a safe environment to protect them from the often harsh conditions during storage and ensuring survival and establishment after introduction into soils. One of the key issues in formulation development and production is the quality control of the products, at each stage of the process. This review presents the different components and the major steps involved in the formulation of good quality biofertilizers, including the techniques used to assess the quality of the products following production. The quality of currently available inoculants is also reviewed, emphasizing the need for better quality control systems worldwide. © 2013 Springer-Verlag Berlin Heidelberg. Source


Perot T.,IRSTEA | Picard N.,CIRAD
Ecological Research | Year: 2012

The effect of mixture on productivity has been widely studied for applications related to agriculture but results in forestry are scarce due to the difficulty of conducting experiments. Using a modeling approach, we analyzed the effect of mixture on the productivity of forest stands composed of sessile oak and Scots pine. To determine whether mixture had a positive effect on productivity and if there was an optimum mixing proportion, we used an aggregation technique involving a mean-field approximation to analyze a distance-dependent individual-based model. We conducted a local sensitivity analysis to identify the factors that influenced the results the most. Our model made it possible to predict the species proportion where productivity peaks. This indicates that transgressive over-yielding can occur in these stands and suggests that the two species are complementary. For the studied growth period, mixture does have a positive effect on the productivity of oak-pine stands. Depending on the plot, the optimum species proportion ranges from 38 to 74% of oak and the gain in productivity compared to the current mixture is 2.2% on average. The optimum mixing proportion mainly depends on parameters concerning intra-specific oak competition and yet, intra-specific competition higher than inter-specific competition was not sufficient to ensure over-yielding in these stands. Our work also shows how results obtained for individual tree growth may provide information on the productivity of the whole stand. This approach could help us to better understand the link between productivity, stand characteristics, and species growth parameters in mixed forests. © 2011 The Ecological Society of Japan. Source

Discover hidden collaborations