Cipe margo Cancer Center

São Paulo, Brazil

Cipe margo Cancer Center

São Paulo, Brazil

Time filter

Source Type

Kuasne H.,Cipe margo Cancer Center | Kuasne H.,São Paulo State University | Barros-Filho M.C.,Cipe margo Cancer Center | Busso-Lopes A.,Cipe margo Cancer Center | And 13 more authors.
Oncotarget | Year: 2017

Penile carcinoma (PeCa) is an important public health issue in poor and developing countries, and has only recently been explored in terms of genetic and epigenetic studies. Integrative data analysis is a powerful method for the identification of molecular drivers involved in cancer development and progression. miRNA and mRNA expression profiles followed by integrative analysis were investigated in 23 PeCa and 12 non-neoplastic penile tissues (NPT). Expression levels of eight miRNAs and 10 mRNAs were evaluated in the same set of samples used for microarray and in a validation set of cases (PeCa = 36; NPT = 27). Eighty-one miRNAs and 2,697 mRNAs were identified as differentially expressed in PeCa. Integrative data analysis revealed 255 mRNAs potentially regulated by 68 miRNAs. Using RT-qPCR, eight miRNAs and nine transcripts were confirmed as altered in PeCa. We identified that MMP1, MMP12 and PPARG and hsa-miR-31-5p, hsa-miR-224-5p, and hsa-miR-223-3p were able to distinguish tumors from NPT with high sensitivity and specificity. Higher MMP1 expression was detected as a better predictor of lymph node metastasis than the clinical-pathological data. In addition, PPARG and EGFR were highlighted as potential pathways for targeted therapy in PeCa. The analysis based on HPV positivity (7 of 23 cases) revealed five miRNA and 13 mRNA differentially expressed. Although in a limited number of cases, HPV positive PeCa presented less aggressive phenotype in comparison with negative cases. Overall, an integrative analysis using mRNA and miRNA profiles revealed markers related with tumor development and progression. Furthermore, MMP1 expression level was a predictive marker for lymph node metastasis in patients with PeCa.


Silva F.C.,Cipe margo Cancer Center | Lisboa B.C.G.,Cipe margo Cancer Center | Figueiredo M.C.P.,Cipe margo Cancer Center | Torrezan G.T.,Cipe margo Cancer Center | And 8 more authors.
BMC Medical Genetics | Year: 2014

Background: Germ line mutations in BRCA1 and BRCA2 (BRCA1/2) and other susceptibility genes have been identified as genetic causes of hereditary breast and ovarian cancer (HBOC). To identify the disease-causing mutations in a cohort of 120 Brazilian women fulfilling criteria for HBOC, we carried out a comprehensive screening of BRCA1/2, TP53 R337H, CHEK2 1100delC, followed by an analysis of copy number variations in 14 additional breast cancer susceptibility genes (PTEN, ATM, NBN, RAD50, RAD51, BRIP1, PALB2, MLH1, MSH2, MSH6, TP53, CDKN2A, CDH1 and CTNNB1).Methods: Capillary sequencing and multiplex ligation-dependent probe amplification (MLPA) were used for detecting point mutations and copy number variations (CNVs), respectively, for the BRCA1 and BRCA2 genes; capillary sequencing was used for point mutation for both variants TP53 R337H and CHEK2 1100delC, and finally array comparative genomic hybridization (array-CGH) was used for identifying CNVs in the 14 additional genes.Results: The positive detection rate in our series was 26%. BRCA1 pathogenic mutations were found in 20 cases, including two cases with CNVs, whereas BRCA2 mutations were found in 7 cases. We also found three patients with the TP53 R337H mutation and one patient with the CHEK2 1100delC mutation. Seven (25%) pathogenic mutations in BRCA1/2 were firstly described, including a splice-site BRCA1 mutation for which pathogenicity was confirmed by the presence of an aberrant transcript showing the loss of the last 62 bp of exon 7. Microdeletions of exon 4 in ATM and exon 2 in PTEN were identified in BRCA2-mutated and BRCA1/2-negative patients, respectively.Conclusions: In summary, our results showed a high frequency of BRCA1/2 mutations and a higher prevalence of BRCA1 (64.5%) gene. Moreover, the detection of the TP53 R337H variant in our series and the fact that this variant has a founder effect in our population prompted us to suggest that all female breast cancer patients with clinical criteria for HBOC and negative for BRCA1/2 genes should be tested for the TP53 R337H variant. Furthermore, the presence of genomic structural rearrangement resulting in CNVs in other genes that predispose breast cancer in conjunction with BRCA2 point mutations demonstrated a highly complex genetic etiology in Brazilian breast cancer families. © 2014 Silva et al.; licensee BioMed Central Ltd.

Loading Cipe margo Cancer Center collaborators
Loading Cipe margo Cancer Center collaborators