Cipe Ac Camargo Cancer Center

São Paulo, Brazil

Cipe Ac Camargo Cancer Center

São Paulo, Brazil
SEARCH FILTERS
Time filter
Source Type

de Macedo M.P.,Ac Camargo Cancer Center | de Macedo M.P.,Cipe Ac Camargo Cancer Center | de Melo F.M.,Ac Camargo Cancer Center | Lisboa B.C.G.,Ac Camargo Cancer Center | And 11 more authors.
Experimental and Molecular Pathology | Year: 2015

Introduction: Inhibition of EGFR is a strategy for treating metastatic colorectal cancer (CRC) patients. KRAS sequencing is mandatory for selecting wild-type tumor patients who might benefit from this treatment. DNA from formalin-fixed paraffin-embedded (FFPE) tissues is commonly used for routine clinical detection of mutations, and its amplification succeeds only when all preanalytical histological processes have been controlled. In cases that are not properly processed, the DNA results can be poor, with low peak pyrosequencing findings. We designed and tested a pair of forward and reverse primers for a nested PCR method, followed by pyrosequencing, in a single Latin American institution series of 422 unselected CRC patients, correlating KRAS mutations with pathological and clinical data. Materials and methods: Patient DNA samples from tumors were obtained by scraping or laser microdissection of cells from FFPE tissue and extracted using a commercial kit. DNA was first amplified by PCR using 2 primers that we designed; then, nested PCR was performed with the amplicon from the preamplification PCR using the KRAS PyroMark™ Q96 V2.0 kit (Qiagen). Pathological data were retrieved from pathology reports. Results: KRAS mutation was observed in 33% of 421 cases. Codon 12 was mutated in 76% of cases versus codon 13 in 24%. Right-sided CRCs harbored more KRAS mutations than left-sided tumors, as did tumors that presented with perineural invasion. Conclusion: Our findings in this Latin American population are consistent with the literature regarding the frequency of KRAS mutations in CRC, their distribution between codons 12 and 13, and type of nucleotide substitution. By combining nested PCR and pyrosequencing, we achieved a high rate of conclusive results in testing KRAS mutations in CRC samples - a method that can be used as an ancillary test for failed assays by conventional PCR. © 2015 Elsevier Inc.


PubMed | Ac Camargo Cancer Center, The Surgical Center and Cipe Ac Camargo Cancer Center
Type: Journal Article | Journal: Experimental and molecular pathology | Year: 2015

Inhibition of EGFR is a strategy for treating metastatic colorectal cancer (CRC) patients. KRAS sequencing is mandatory for selecting wild-type tumor patients who might benefit from this treatment. DNA from formalin-fixed paraffin-embedded (FFPE) tissues is commonly used for routine clinical detection of mutations, and its amplification succeeds only when all preanalytical histological processes have been controlled. In cases that are not properly processed, the DNA results can be poor, with low peak pyrosequencing findings. We designed and tested a pair of forward and reverse primers for a nested PCR method, followed by pyrosequencing, in a single Latin American institution series of 422 unselected CRC patients, correlating KRAS mutations with pathological and clinical data.Patient DNA samples from tumors were obtained by scraping or laser microdissection of cells from FFPE tissue and extracted using a commercial kit. DNA was first amplified by PCR using 2 primers that we designed; then, nested PCR was performed with the amplicon from the preamplification PCR using the KRAS PyroMark Q96 V2.0 kit (Qiagen). Pathological data were retrieved from pathology reports.KRAS mutation was observed in 33% of 421 cases. Codon 12 was mutated in 76% of cases versus codon 13 in 24%. Right-sided CRCs harbored more KRAS mutations than left-sided tumors, as did tumors that presented with perineural invasion.Our findings in this Latin American population are consistent with the literature regarding the frequency of KRAS mutations in CRC, their distribution between codons 12 and 13, and type of nucleotide substitution. By combining nested PCR and pyrosequencing, we achieved a high rate of conclusive results in testing KRAS mutations in CRC samples - a method that can be used as an ancillary test for failed assays by conventional PCR.


Robbiani D.F.,Rockefeller University | Deroubaix S.,Rockefeller University | Feldhahn N.,Rockefeller University | Feldhahn N.,Center for Haematology | And 12 more authors.
Cell | Year: 2015

Summary Chronic infection with Plasmodium falciparum was epidemiologically associated with endemic Burkitt's lymphoma, a mature B cell cancer characterized by chromosome translocation between the c-myc oncogene and Igh, over 50 years ago. Whether infection promotes B cell lymphoma, and if so by which mechanism, remains unknown. To investigate the relationship between parasitic disease and lymphomagenesis, we used Plasmodium chabaudi (Pc) to produce chronic malaria infection in mice. Pc induces prolonged expansion of germinal centers (GCs), unique compartments in which B cells undergo rapid clonal expansion and express activation-induced cytidine deaminase (AID), a DNA mutator. GC B cells elicited during Pc infection suffer widespread DNA damage, leading to chromosome translocations. Although infection does not change the overall rate, it modifies lymphomagenesis to favor mature B cell lymphomas that are AID dependent and show chromosome translocations. Thus, malaria infection favors mature B cell cancers by eliciting protracted AID expression in GC B cells. © 2015 Elsevier Inc.

Loading Cipe Ac Camargo Cancer Center collaborators
Loading Cipe Ac Camargo Cancer Center collaborators