Entity

Time filter

Source Type

Bad Münster am Stein-Ebernburg, Germany

Patent
Cilian Ag | Date: 2011-03-02

The present invention is related to a system for the heterologous expression of a monoclonal Antibody (mAb) or a fragment or derivative thereof, said system comprising at least one ciliate host cell, and incorporated, into said ciliate host cell, at least one heterologous nucleic acid molecule encoding for said monoclonal Antibody, or a fragment or derivative thereof.


Aldag I.,Cilian AG | Bockau U.,Cilian AG | Rossdorf J.,Cilian AG | Laarmann S.,Carl Zeiss GmbH | And 4 more authors.
BMC Biotechnology | Year: 2011

Background: Tetrahymena thermophila possesses many attributes that render it an attractive host for the expression of recombinant proteins. Surface proteins from the parasites Ichthyophthirius multifiliis and Plasmodium falciparum and avian influenza virus antigen H5N1 were displayed on the cell membrane of this ciliate. Furthermore, it has been demonstrated that T. thermophila is also able to produce a functional human DNase I. The present study investigates the heterologous expression of the functional human intestinal alkaline phosphatase (hiAP) using T. thermophila and thereby presents a powerful tool for the optimization of the ciliate-based expression system.Results: Functional and full length human intestinal alkaline phosphatase was expressed by T. thermophila using a codon-adapted gene containing the native signal-peptide and GPI (Glycosylphosphatidylinositol) anchor attachment signal. HiAP activity in the cell extract of transformants suggested that the hiAP gene was successfully expressed. Furthermore, it was demonstrated that the enzyme was modified with N-glycosylation and localized on the surface membrane by the C-terminal GPI anchor. A C-terminally truncated version of hiAP lacking the GPI anchor signal peptide was secreted into the medium as an active enzyme. In a first approach to establish a high level expression system up to 14,000 U/liter were produced in a time frame of two days, which exceeds the production rate of other published expression systems for this enzyme.Conclusions: With the expression of hiAP, not only a protein of commercial interest could be produced, but also a reporter enzyme that offers the possibility to analyze T. thermophila genes that play a role in the regulation of protein secretion. Additionally, the fact that ciliates do not secrete an endogenous alkaline phosphatase provides the possibility to use the truncated hiAP as a reporter enzyme, allowing the quantification of measures that will be necessary for further optimization of the host strains and the fermentation processes. © 2011 Aldag et al; licensee BioMed Central Ltd. Source


Cowan G.J.M.,University of Edinburgh | Bockau U.,Cilian AG | Eleni-Muus J.,Cilian AG | Aldag I.,Cilian AG | And 4 more authors.
PLoS ONE | Year: 2014

Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens. © 2014 Cowan et al. Source

Discover hidden collaborations