Entity

Time filter

Source Type


Almeida A.M.,University of Lisbon | Almeida A.M.,Ciisa Centro Interdisciplinar Of Investigacao Em Sanidade Animal | Almeida A.M.,ITQB Institute Tecnologia Quimica e Biologica da UNL | Almeida A.M.,IBET Institute Biologia Experimental e Tecnologica | And 18 more authors.
Animal | Year: 2014

Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid-i.e. The proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002-Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East-West and North-South gaps existing in the European farm animal research. Future activities of significance in the field of scientific research, involving members of the action, as well as others, will likely be established in the future. © © The Animal Consortium 2014 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


Bustos A.Y.,CONICET | de Valdez G.F.,CONICET | de Valdez G.F.,National University of Tucuman | Raya R.,CONICET | And 6 more authors.
Food Research International | Year: 2015

Lactobacillus (L.) reuteri CRL1098 is a probiotic bacterium with a proven hypocholesterolemic effect, moderate immune stimulant effect and ability to produce cobalamin. The CRL1098 strain survives the passage through the gastrointestinal tract where the exposure to bile acids (BA) causes deleterious effects. In order to characterize the molecular mechanisms through which L. reuteri CRL1098 adapts to bile, its proteomic response was evaluated in the presence of conjugated (glycodeoxycholic acid-GDCA-) and free (deoxycholic acid-DCA-) bile acids (BA). Cell growth inhibition was observed only in the presence of DCA. Two-dimensional gel electrophoresis coupled to mass spectrometry allowed us to identify 25 protein spots differentially expressed in response to both BA. The main functional categories assigned to the proteins were metabolism of nucleotides and glycerolipids, transcription and translation, pH homeostasis and stress-responses. Remarkably, cytosine triphosphate(CTP) synthetase, enzyme related to the repair of oxidative DNA, was over-expressed in the presence of GDCA and significantly repressed by DCA; also three proteins related to protein transcription and translation were over expressed in the presence of the conjugated BA and one, was repressed by the free BA. This differential expression could explain the delayed growth of the cells challenged with the free BA and the unaffected growth in the presence of GDCA. Moreover, some general stress proteins were triggered in the presence of both BA. In addition, the bile salt hydrolase (BSH) enzyme regulation in response to BA was analyzed using real time-PCR to determine its contribution to cell tolerance. An up-regulation of the bsh gene in response to BA was observed, suggesting that this enzyme could be a specific biomarker of bile adaption in L. reuteri CRL1098. The present work proposes that BA induce a complex physiological response in L. reuteri and provide new insights into the mechanisms involved in BA tolerance. © 2015 Elsevier Ltd.


Almeida A.M.,IICT Institute Investigacao Cientifica Tropical | Almeida A.M.,Ciisa Centro Interdisciplinar Of Investigacao Em Sanidade Animal | Almeida A.M.,New University of Lisbon | Almeida A.M.,IBET Institute Biologia Experimental e Tecnologica | And 9 more authors.
Journal of Proteomics | Year: 2014

Seasonal weight loss is the main limitation to animal production worldwide, significantly affecting the productivity of milk, meat and wool farms, particularly in drought-prone areas of the world where most of the large-scale wool production farms are located. Although the effect of nutritional status on wool quality parameters has been extensively studied, little is known on how it affects wool protein composition. Here, a proteomic approach has been applied to study changes in fiber structure and protein composition in wool from merino sheep subjected to experimentally induced weight loss. Results indicate that there is a significant reduction in the fiber diameter of wool from the animals on a restricted diet over a 42-day period. At the same time, significant increases in the expression of the high sulfur protein KAP13.1 and proteins from the high glycine-tyrosine protein KAP6 family in the wools from the animals on the restricted diet were also detected. Such findings have strong implications for the wool industry that favors finer wool. Biological significance: Seasonal weight loss caused by poor pasture availability has strong effects on wool productivity parameters and quality traits. In this work we determine that experimentally induced weight loss causes a decrease in fiber diameter associated with an increase in the level of high sulfur protein KAP13.1 and proteins from the high glycine-tyrosine protein KAP6 family. The implication of this is that decreasing the fiber diameter of the wool by this process could result in a fiber reduced prickle but with reduced wearability and appearance retention. © 2014 Elsevier B.V.


Cugno G.,University of Porto | Cugno G.,University of Las Palmas de Gran Canaria | Parreira J.R.,IBET Institute Biologia Experimental e Tecnologica | Parreira J.R.,New University of Lisbon | And 14 more authors.
PLoS ONE | Year: 2016

Seasonal weight loss (SWL) is the most important limitation to animal production in the Tropical and Mediterranean regions, conditioning producer's incomes and the nutritional status of rural communities. It is of importance to produce strategies to oppose adverse effects of SWL. Breeds that have evolved in harsh climates have acquired tolerance to SWL through selection. Most of the factors determining such ability are related to changes in biochemical pathways as affected by SWL. In this study, a gel based proteomics strategy (BN: Blue-Native Page and 2DE: Two-dimensional gel electrophoresis) was used to characterize the mitochondrial proteome of the secretory tissue of the goat mammary gland. In addition, we have conducted an investigation of the effects of weight loss in two goat breeds with different levels of adaptation to nutritional stress: Majorera (tolerant) and Palmera (susceptible). The study used Majorera and Palmera dairy goats, divided in 4 sets, 2 for each breed: underfed group fed on wheat straw (restricted diet, so their body weight would be 15-20% reduced by the end of experiment), and a control group fed with an energy-balanced diet. At the end of the experimental period (22 days), mammary gland biopsies were obtained for all experimental groups. The proteomic analysis of the mitochondria enabled the resolution of a total of 277 proteins, and 148 (53%) were identified by MALDI-TOF/TOF mass spectrometry. Some of the proteins were identified as subunits of the glutamate dehydrogenase complex and the respiratory complexes I, II, IV, V from mitochondria, as well as numerous other proteins with functions in: metabolism, development, localization, cellular organization and biogenesis, biological regulation, response to stimulus, among others, that were mapped in both BN and 2DE gels. The comparative proteomics analysis enabled the identification of several proteins: NADH-ubiquinone oxidoreductase 75 kDa subunit and lamin B1 mitochondrial (up-regulated in the Palmera breed), Guanine nucleotide-binding protein G(I)/G(S)/G (T) subunit beta-2 (up-regulated in the Majorera breed) and cytochrome b-c1 complex subunit 1, mitochondrial and Chain D, Bovine F1-C8 Sub-Complex Of Atp Synthase (downregulated in the Majorera breed) as a consequence of weight loss. © 2016 Cugno et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Ferreira A.M.,University of Evora | Ferreira A.M.,New University of Lisbon | Marques A.T.,Institute Investigacao Cientifica Tropical | Marques A.T.,University of Milan | And 16 more authors.
PLoS ONE | Year: 2015

Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy. © 2015, Public Library of Science. All rights reserved. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Discover hidden collaborations