Ciisa Centro Interdisciplinar Of Investigacao Em Sanidade Animal

Lisbon, Portugal

Ciisa Centro Interdisciplinar Of Investigacao Em Sanidade Animal

Lisbon, Portugal
SEARCH FILTERS
Time filter
Source Type

Almeida A.M.,University of Lisbon | Almeida A.M.,Ciisa Centro Interdisciplinar Of Investigacao Em Sanidade Animal | Almeida A.M.,ITQB Institute Tecnologia Quimica e Biologica da UNL | Almeida A.M.,IBET Institute Biologia Experimental e Tecnologica | And 18 more authors.
Animal | Year: 2014

Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid-i.e. The proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002-Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East-West and North-South gaps existing in the European farm animal research. Future activities of significance in the field of scientific research, involving members of the action, as well as others, will likely be established in the future. © © The Animal Consortium 2014 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


Alves S.P.,Ciisa Centro Interdisciplinar Of Investigacao Em Sanidade Animal | Bessa R.J.B.,Ciisa Centro Interdisciplinar Of Investigacao Em Sanidade Animal | Quaresma M.A.G.,Ciisa Centro Interdisciplinar Of Investigacao Em Sanidade Animal | Milton J.,University of Western Australia | And 4 more authors.
PLoS ONE | Year: 2013

Fat tailed sheep breeds are known for their adaptation to nutritional stress, among other harsh production conditions. Damara sheep, native to Southern Africa, have recently been exported to other areas of the world, particularly Australia, aiming to produce lamb in semi-arid regions. Damaras have a unique hanging fat tail, a fat depot able to be mobilized under nutritional stress. In this article we perform an in-depth characterization of the fatty acid profiles of the fat tail in underfed and control Damara rams. Profiles were very similar between experimental groups, with the exception of palmitic acid (16:0) that was lower (P = 0.014) in underfed animals. However, the most striking result was the very high proportions of non-terminal branched chain fatty acids found in the fat tail adipose tissue, as well as the gastrocnemius muscle of Damara rams. The muscle of Dorper and Merino rams used in the same experiment did not present non-terminal branched chain fatty acids, suggesting that Damara rams have a unique lipid metabolism. Herein, we interpret this trait relating it to a higher ability of Damara sheep to digest fibrous fodder and to putative differences in the propionate metabolism by comparison to other sheep breeds. © 2013 Alves et al.


Puerto M.,University of Seville | Campos A.,CIIMAR – Interdisciplinary Center of Marine and Environmental | Prieto A.,University of Seville | Camean A.,University of Seville | And 7 more authors.
Aquatic Toxicology | Year: 2011

The cyanobacteria Cylindrospermopsis raciborskii is considered a threat to aquatic organisms due to the production of the toxin cylindrospermopsin (CYN). Despite the numerous reports evidencing the toxic effects of C. raciborskii cells and CYN in different species, not much is known regarding the toxicity mechanisms associated with this toxin and the cyanobacteria. In this work, a proteomics approach based in the two-dimensional gel electrophoresis and mass spectrometry was used to study the effects of the exposure of two bivalve species, Mytilus galloprovincialis and Corbicula fluminea, to CYN producing (CYN+) and non-producing (CYN-) C. raciborskii cells. Additionally the activities of glutathione S-transferase (GST) and glutathione peroxidase (GPx) were determined. Alterations in actin and tubulin isoforms were detected in gills of both bivalve species and digestive gland of M. galloprovincialis when exposed to CYN- and CYN+ cells. Moreover, GST and GPx activities changed in gills and digestive tract of bivalves exposed to both C. raciborskii freeze dried cells, in comparison to control animals exposed to the green alga Chlorella vulgaris. These results suggest the induction of physiological stress and tissue injury in bivalves by C. raciborskii. This condition is supported by the changes observed in GPx and GST activities which indicate alterations in the oxidative stress defense mechanisms. The results also evidence the capacity of CYN non-producing C. raciborskii to induce biochemical responses and therefore its toxicity potential to bivalves. The heat shock protein 60 (HSP60), extrapallial (EP) fluid protein and triosephosphate isomerase homologous proteins from gills of M. galloprovincialis were down-regulated specifically with the presence of CYN+ C. raciborskii cells. The presence of CYN may lead to additional toxic effects in M. galloprovincialis. This work demonstrates that proteomics is a powerful approach to characterize the biochemical effects of C. raciborskii and to investigate the physiological condition of the exposed organisms. © 2010 Elsevier B.V.


Bustos A.Y.,CONICET | de Valdez G.F.,CONICET | de Valdez G.F.,National University of Tucuman | Raya R.,CONICET | And 6 more authors.
Food Research International | Year: 2015

Lactobacillus (L.) reuteri CRL1098 is a probiotic bacterium with a proven hypocholesterolemic effect, moderate immune stimulant effect and ability to produce cobalamin. The CRL1098 strain survives the passage through the gastrointestinal tract where the exposure to bile acids (BA) causes deleterious effects. In order to characterize the molecular mechanisms through which L. reuteri CRL1098 adapts to bile, its proteomic response was evaluated in the presence of conjugated (glycodeoxycholic acid-GDCA-) and free (deoxycholic acid-DCA-) bile acids (BA). Cell growth inhibition was observed only in the presence of DCA. Two-dimensional gel electrophoresis coupled to mass spectrometry allowed us to identify 25 protein spots differentially expressed in response to both BA. The main functional categories assigned to the proteins were metabolism of nucleotides and glycerolipids, transcription and translation, pH homeostasis and stress-responses. Remarkably, cytosine triphosphate(CTP) synthetase, enzyme related to the repair of oxidative DNA, was over-expressed in the presence of GDCA and significantly repressed by DCA; also three proteins related to protein transcription and translation were over expressed in the presence of the conjugated BA and one, was repressed by the free BA. This differential expression could explain the delayed growth of the cells challenged with the free BA and the unaffected growth in the presence of GDCA. Moreover, some general stress proteins were triggered in the presence of both BA. In addition, the bile salt hydrolase (BSH) enzyme regulation in response to BA was analyzed using real time-PCR to determine its contribution to cell tolerance. An up-regulation of the bsh gene in response to BA was observed, suggesting that this enzyme could be a specific biomarker of bile adaption in L. reuteri CRL1098. The present work proposes that BA induce a complex physiological response in L. reuteri and provide new insights into the mechanisms involved in BA tolerance. © 2015 Elsevier Ltd.


Almeida A.M.,IICT Institute Investigacao Cientifica Tropical | Almeida A.M.,Ciisa Centro Interdisciplinar Of Investigacao Em Sanidade Animal | Almeida A.M.,New University of Lisbon | Almeida A.M.,IBET Institute Biologia Experimental e Tecnologica | And 9 more authors.
Journal of Proteomics | Year: 2014

Seasonal weight loss is the main limitation to animal production worldwide, significantly affecting the productivity of milk, meat and wool farms, particularly in drought-prone areas of the world where most of the large-scale wool production farms are located. Although the effect of nutritional status on wool quality parameters has been extensively studied, little is known on how it affects wool protein composition. Here, a proteomic approach has been applied to study changes in fiber structure and protein composition in wool from merino sheep subjected to experimentally induced weight loss. Results indicate that there is a significant reduction in the fiber diameter of wool from the animals on a restricted diet over a 42-day period. At the same time, significant increases in the expression of the high sulfur protein KAP13.1 and proteins from the high glycine-tyrosine protein KAP6 family in the wools from the animals on the restricted diet were also detected. Such findings have strong implications for the wool industry that favors finer wool. Biological significance: Seasonal weight loss caused by poor pasture availability has strong effects on wool productivity parameters and quality traits. In this work we determine that experimentally induced weight loss causes a decrease in fiber diameter associated with an increase in the level of high sulfur protein KAP13.1 and proteins from the high glycine-tyrosine protein KAP6 family. The implication of this is that decreasing the fiber diameter of the wool by this process could result in a fiber reduced prickle but with reduced wearability and appearance retention. © 2014 Elsevier B.V.


Ferreira A.M.,University of Évora | Ferreira A.M.,New University of Lisbon | Marques A.T.,Institute Investigacao Cientifica Tropical | Marques A.T.,University of Milan | And 16 more authors.
PLoS ONE | Year: 2015

Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy. © 2015, Public Library of Science. All rights reserved. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.


Almeida A.M.,IICT Institute Investigacao Cientifica Tropical | Almeida A.M.,Ciisa Centro Interdisciplinar Of Investigacao Em Sanidade Animal | Campos A.,New University of Lisbon | Francisco R.,New University of Lisbon | And 6 more authors.
Animal Genetics | Year: 2010

The study of changes within the key agents regulating metabolism during genetic upgrading because of selection can contribute to an improved understanding of genomic and physiological relationships. This may lead to increased efficiencies in animal production. These changes, regarding energy and protein metabolic saving mechanisms, can be highlighted during food restriction periods. In this study, a 20% weight reduction was induced in two rabbit breeds: New Zealand white, a selected meat producer (Oryctolagus cuniculus cuniculus), and Iberian wild rabbit (Oryctolagus cuniculus algirus), with the aim of determining differential protein expression in the gastrocnemius muscle within control (ad libitum) and restricted diet experimental animal groups, using techniques of two-dimensional gel electrophoresis and peptide mass fingerprinting. Results show that l-lactate dehydrogenase, adenylate kinase, β enolase and α enolase, fructose bisphosphate aldolase A and glyceraldehyde 3-phosphate dehydrogenase, which are enzymes involved in energy metabolism, are differentially expressed in restricted diet experimental animal groups. These enzymes are available to be further tested as relevant biomarkers of weight loss and putative objects of manipulation as a selection tool towards increasing tolerance to weight loss. Similar reasoning could be applied to 2D gel electrophoresis spots corresponding to the important structural proteins tropomyosin β chain and troponin I. Finally, a spot identified as mitochondrial import stimulation factor seems of special interest as a marker of undernutrition, and it may be the object of further studies aiming to better understand its physiological role. © 2009 Stichting International Foundation for Animal Genetics.


van Harten S.,IICT Institute Investigacao Cientifica Tropical | van Harten S.,Ciisa Centro Interdisciplinar Of Investigacao Em Sanidade Animal | Kilminster T.,Government of Western Australia | Scanlon T.,Government of Western Australia | And 8 more authors.
Journal of the Science of Food and Agriculture | Year: 2016

BACKGROUND: Muscle fatty acid profile reflects the body condition of animals and has a noticeable effect on meat quality. Herein, longissimus dorsi muscle of three different sheep breeds, Damara (a fat-tailed breed), Dorper and Australian Merino sheep, was analysed for fatty acid composition. The three breeds were subjected to two distinctive feeding levels (ad libitum and restricted feeding) over 42 days. RESULTS: The Damara sheep revealed several differences compared to the other two breeds, namely a higher concentration of polyunsaturated fatty acids, which can be related to being a fat-tailed breed. Even in restricted feeding conditions, this breed revealed the highest levels compared to Merino and Dorper sheep respectively, of linoleic acid (+31% and +28%), linolenic acid (+97% and +51%), eicosapentaenoic acid (EPA) (+65% and +37%), docosapentanenoic acid (DPA) (+31% Merino) and dodosahexanenoic acid (DHA) (+63% and +77%). EPA, DPA and DHA are three omega-3 fatty acids, with described beneficial characteristics. CONCLUSION: With this work we show other qualities (higher levels of the omega-3 fatty acids, EPA, DPA and DHA) of Damara meat that might present this breed as an interesting alternative for animal production in semi-arid climates. © 2015 Society of Chemical Industry.


Cugno G.,University of Porto | Cugno G.,University of Las Palmas de Gran Canaria | Parreira J.R.,IBET Institute Biologia Experimental E Tecnologica | Parreira J.R.,New University of Lisbon | And 14 more authors.
PLoS ONE | Year: 2016

Seasonal weight loss (SWL) is the most important limitation to animal production in the Tropical and Mediterranean regions, conditioning producer's incomes and the nutritional status of rural communities. It is of importance to produce strategies to oppose adverse effects of SWL. Breeds that have evolved in harsh climates have acquired tolerance to SWL through selection. Most of the factors determining such ability are related to changes in biochemical pathways as affected by SWL. In this study, a gel based proteomics strategy (BN: Blue-Native Page and 2DE: Two-dimensional gel electrophoresis) was used to characterize the mitochondrial proteome of the secretory tissue of the goat mammary gland. In addition, we have conducted an investigation of the effects of weight loss in two goat breeds with different levels of adaptation to nutritional stress: Majorera (tolerant) and Palmera (susceptible). The study used Majorera and Palmera dairy goats, divided in 4 sets, 2 for each breed: underfed group fed on wheat straw (restricted diet, so their body weight would be 15-20% reduced by the end of experiment), and a control group fed with an energy-balanced diet. At the end of the experimental period (22 days), mammary gland biopsies were obtained for all experimental groups. The proteomic analysis of the mitochondria enabled the resolution of a total of 277 proteins, and 148 (53%) were identified by MALDI-TOF/TOF mass spectrometry. Some of the proteins were identified as subunits of the glutamate dehydrogenase complex and the respiratory complexes I, II, IV, V from mitochondria, as well as numerous other proteins with functions in: metabolism, development, localization, cellular organization and biogenesis, biological regulation, response to stimulus, among others, that were mapped in both BN and 2DE gels. The comparative proteomics analysis enabled the identification of several proteins: NADH-ubiquinone oxidoreductase 75 kDa subunit and lamin B1 mitochondrial (up-regulated in the Palmera breed), Guanine nucleotide-binding protein G(I)/G(S)/G (T) subunit beta-2 (up-regulated in the Majorera breed) and cytochrome b-c1 complex subunit 1, mitochondrial and Chain D, Bovine F1-C8 Sub-Complex Of Atp Synthase (downregulated in the Majorera breed) as a consequence of weight loss. © 2016 Cugno et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


PubMed | Ciisa Centro Interdisciplinar Of Investigacao Em Sanidade Animal
Type: Journal Article | Journal: PloS one | Year: 2013

Fat tailed sheep breeds are known for their adaptation to nutritional stress, among other harsh production conditions. Damara sheep, native to Southern Africa, have recently been exported to other areas of the world, particularly Australia, aiming to produce lamb in semi-arid regions. Damaras have a unique hanging fat tail, a fat depot able to be mobilized under nutritional stress. In this article we perform an in-depth characterization of the fatty acid profiles of the fat tail in underfed and control Damara rams. Profiles were very similar between experimental groups, with the exception of palmitic acid (16:0) that was lower (P = 0.014) in underfed animals. However, the most striking result was the very high proportions of non-terminal branched chain fatty acids found in the fat tail adipose tissue, as well as the gastrocnemius muscle of Damara rams. The muscle of Dorper and Merino rams used in the same experiment did not present non-terminal branched chain fatty acids, suggesting that Damara rams have a unique lipid metabolism. Herein, we interpret this trait relating it to a higher ability of Damara sheep to digest fibrous fodder and to putative differences in the propionate metabolism by comparison to other sheep breeds.

Loading Ciisa Centro Interdisciplinar Of Investigacao Em Sanidade Animal collaborators
Loading Ciisa Centro Interdisciplinar Of Investigacao Em Sanidade Animal collaborators