Time filter

Source Type

Malcata F.X.,Superior Institute of Maia | Malcata F.X.,CIIMAR - Interdisciplinary Center of Marine and Environmental | Malcata F.X.,New University of Lisbon
Trends in Biotechnology

Microalgae have much higher lipid yields than those of agricultural oleaginosous crops, and they do not compromise arable land. Despite this, current microalga-based processes suffer from several constraints pertaining to the biocatalyst and the bioreactor, which hamper technologically and economically feasible scale-up. Here, we briefly review recent active research and development efforts worldwide, and discuss the most relevant shortcomings of microalgal biofuels. This review goes one step further relative to related studies, because it tackles otherwise scarcely mentioned issues - for example, heterotrophic versus autotrophic metabolism, alkane versus glyceride synthesis, conduction versus bubbling of CO 2, and excretion versus accumulation of lipids. Besides promising solutions that have been hypothesized and arise from multidisciplinary approaches, we also consider less conventional ones. Microalgae and biofuels hold indeed a promising partnership, but a fully competitive technology is not expected to be available before the end of this decade, because the need for one order of magnitude increase in productivity requires development of novel apparatuses and transformed cells. © 2011. Source

Goncalves A.F.,CIIMAR - Interdisciplinary Center of Marine and Environmental
Developmental and comparative immunology

Ammonia is a toxic by-product of amino acid catabolism and a common environmental pollutant that has been associated with increased disease susceptibility in fish although the mechanism is not well understood. We addressed the hypothesis that elevated environmental ammonia acts by impairing the acute phase response (APR). Specifically, we determined the impact of sub-lethal acute (24 h) and chronic (14 d) ammonia exposure on acute phase protein gene expression in zebrafish (Danio rerio) in response to a challenge with bacterial lipopolysaccharide (LPS: i.p. 10 μg/g after 24h). A panel of LPS-responsive genes (SAA, HAMP, LECT2, Hp and IL1β) were identified and evaluated by real-time quantitative PCR. Ammonia was found to impair induction of SAA, HAMP and LECT2 by 50-90%. Both short (15 min, 1h and 24h) and long-term (14 days) exposure to high environmental ammonia concentrations significantly elevated whole-body cortisol levels compared with control fish. Our results reveal for the first time that exposure to high environmental levels of ammonia suppresses the innate immune response in fish. We hypothesize that high environmental ammonia-mediated elevation of cortisol levels in zebrafish may be playing a key role in this immunosuppression, while the mechanisms involved remains to be elucidated. Copyright © 2011 Elsevier Ltd. All rights reserved. Source

Larsen K.,CIIMAR - Interdisciplinary Center of Marine and Environmental

As part of Portugal's bid for extending the country's exclusive economic zone, the EMEPC collection program was initiated. From this program several new species of Tanaidacea have been collected during various expeditions. In this paper three new species of Tanaidacea are described from the Azores archipelago in the Mid-Atlantic, Portugal. Two of them belong to the apseudomorphan genera Leviapseudes (L. macaronesia), Pseudosphyrapus (P. azorensis), and another new species belong to the tanaidomorphan genus Paratanais (P. pseudomartinsi). Copyright © 2012 Magnolia Press. Source

Castro L.F.,CIIMAR - Interdisciplinary Center of Marine and Environmental
PloS one

Long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are essential components of biomembranes, particularly in neural tissues. Endogenous synthesis of ARA, EPA and DHA occurs from precursor dietary essential fatty acids such as linoleic and α-linolenic acid through elongation and Δ5 and Δ6 desaturations. With respect to desaturation activities some noteworthy differences have been noted in vertebrate classes. In mammals, the Δ5 activity is allocated to the Fads1 gene, while Fads2 is a Δ6 desaturase. In contrast, teleosts show distinct combinations of desaturase activities (e.g. bifunctional or separate Δ5 and Δ6 desaturases) apparently allocated to Fads2-type genes. To determine the timing of Fads1-Δ5 and Fads2-Δ6 evolution in vertebrates we used a combination of comparative and functional genomics with the analysis of key phylogenetic species. Our data show that Fads1 and Fads2 genes with Δ5 and Δ6 activities respectively, evolved before gnathostome radiation, since the catshark Scyliorhinus canicula has functional orthologues of both gene families. Consequently, the loss of Fads1 in teleosts is a secondary episode, while the existence of Δ5 activities in the same group most likely occurred through independent mutations into Fads2 type genes. Unexpectedly, we also establish that events of Fads1 gene expansion have taken place in birds and reptiles. Finally, a fourth Fads gene (Fads4) was found with an exclusive occurrence in mammalian genomes. Our findings enlighten the history of a crucially important gene family in vertebrate fatty acid metabolism and physiology and provide an explanation of how observed lineage-specific gene duplications, losses and diversifications might be linked to habitat-specific food web structures in different environments and over geological timescales. Source

Agency: Cordis | Branch: H2020 | Program: CSA | Phase: BG-13-2014 | Award Amount: 3.49M | Year: 2015

The overarching goals of the Sea Change project are to bring about a fundamental Sea Change in the way European citizens view their relationship with the sea, by empowering them as Ocean Literate citizens - to take direct and sustainable action towards healthy seas and ocean, healthy communities and ultimately - a healthy planet. Key objectives of Sea Change are to: Compile an in-depth review of the links between Seas and Ocean and Human health based on latest research knowledge outputs Build upon the latest social research on citizen and stakeholder attitudes, perceptions and values to help design and implement successful mobilisation activities focused on education, community, governance actors and directly targeted at citizens. marine education Build upon significant work to date, adopting best practice and embedding Ocean Literacy across established strategic initiatives and networks in order to help maximise impact and ensure sustainability Ensure that efforts to sustain an Ocean Literate society in Europe continue beyond the life of Sea Change through codes of good practice, public campaigns and other ongoing community activities. Ensure that all activities of Sea Change are carefully monitored and evaluated to ensure maximum sustainability, effectiveness and efficiency Ensure Knowledge exchange with transatlantic partners to bring about a global approach to protecting the planets shared seas and ocean. The objectives will be achieved by a closely interlinked programme. Sea Change includes a mobilisation phase engaging with citizens, formal education and policy actors. Crucially the legacy of Sea Change, including continuing knowledge sharing with North America, are embedded within the project.

Discover hidden collaborations