Time filter

Source Type

Donostia / San Sebastian, Spain

Plasmons in graphene nanoresonators have many potential applications in photonics and optoelectronics, including room-temperature infrared and terahertz photodetectors, sensors, reflect arrays or modulators. The development of efficient devices will critically depend on precise knowledge and control of the plasmonic modes. Here, we use near-field microscopy between λ0 = 10–12 μm to excite and image plasmons in tailored disk and rectangular graphene nanoresonators, and observe a rich variety of coexisting Fabry–Perot modes. Disentangling them by a theoretical analysis allows the identification of sheet and edge plasmons, the latter exhibiting mode volumes as small as 10-8λ0 3. By measuring the dispersion of the edge plasmons we corroborate their superior confinement compared with sheet plasmons, which among others could be applied for efficient 1D coupling of quantum emitters. Our understanding of graphene plasmon images is a key to unprecedented in-depth analysis and verification of plasmonic functionalities in future flatland technologies. © 2016 Nature Publishing Group Source

Berger A.,CIC Nanogune
Physica B: Condensed Matter

The paper discusses the physics of magnetization reversal in granular magnetic films. It gives an overview of the key physical properties that determine the collective and macroscopically observable magnetization reversal behavior. In particular, the multitude of observable hysteresis loops is reduced to three key physical quantities, namely the single grain switching field distribution D(h s), the inter-granular exchange coupling constant J ex, and the magnetostatic interaction constant J ms. By varying the relative influence of these quantities, many different shapes of hysteresis loops can occur, which is documented by experimental examples. The regime of partially and strongly correlated reversal is discussed in detail, and minor loop measurements are presented that show scaling behavior for strongly correlated magnetization reversal in the vicinity of hysteresis loop criticality. © 2011 Elsevier B.V. All rights reserved. Source

Prudnikau A.,Belarusian State University | Chuvilin A.,CIC Nanogune | Chuvilin A.,Ikerbasque | Artemyev M.,Belarusian State University
Journal of the American Chemical Society

We synthesized a new type of optically active semiconductor nanoheterostructure based on CdSe nanoplatelets with epitaxially grown CdS flat branches or wings. CdS branches work as efficient photonic antenna in the blue spectral region, enhancing the excitation of CdSe band edge emission. The formation of CdSe-CdS nanoheteroplatelets instead of CdSe/CdS core-shell nanoplatelets was achieved using short-chain Cd ethylhexanoate and sulfur in octadecene as precursors for CdS overgrowth in the presence of acetate salt. © 2013 American Chemical Society. Source

The implementation of the orbital minimization method (OMM) for solving the self-consistent Kohn-Sham (KS) problem for electronic structure calculations in a basis of non-orthogonal numerical atomic orbitals of finite-range is reported. We explore the possibilities for using the OMM as an exact cubic-scaling solver for the KS problem, and compare its performance with that of explicit diagonalization in realistic systems. We analyze the efficiency of the method depending on the choice of line search algorithm and on two free parameters, the scale of the kinetic energy preconditioning and the eigenspectrum shift. The results of several timing tests are then discussed, showing that the OMM can achieve a noticeable speedup with respect to diagonalization even for minimal basis sets for which the number of occupied eigenstates represents a significant fraction of the total basis size (>15%). We investigate the hard and soft parallel scaling of the method on multiple cores, finding a performance equal to or better than diagonalization depending on the details of the OMM implementation. Finally, we discuss the possibility of making use of the natural sparsity of the operator matrices for this type of basis, leading to a method that scales linearly with basis size. © 2013 Elsevier B.V. All rights reserved. Source

Bittner A.M.,CIC Nanogune
Sub-cellular biochemistry

Nanoscale science refers to the study and manipulation of matter at the atomic and molecular scales, including nanometer-sized single objects, while nanotechnology is used for the synthesis, characterization, and for technical applications of structures up to 100 nm size (and more). The broad nature of the fields encompasses disciplines such as solid-state physics, microfabrication, molecular biology, surface science, organic chemistry and also virology. Indeed, viruses and viral particles constitute nanometer-sized ordered architectures, with some of them even able to self-assemble outside cells. They possess remarkable physical, chemical and biological properties, their structure can be tailored by genetic engineering and by chemical means, and their production is commercially viable. As a consequence, viruses are becoming the basis of a new approach to the manufacture of nanoscale materials, made possible only by the development of imaging and manipulation techniques. Such techniques reach the scale of single molecules and nanoparticles. The most important ones are electron microscopy and scanning probe microscopy (both awarded with the Nobel Prize in Physics 1986 for the engineers and scientists who developed the respective instruments). With nanotechnology being based more on experimental than on theoretical investigations, it emerges that physical virology can be seen as an intrinsic part of it. Source

Discover hidden collaborations