Chunlab Inc.

Seoul, South Korea

Chunlab Inc.

Seoul, South Korea

Time filter

Source Type

Shin S.-K.,Korea University | Cho Y.-J.,Chunlab Inc | Yi H.,Korea University
Journal of Microbiology and Biotechnology | Year: 2017

Transfer of Micropolyspora internatus into the genus Saccharomonospora as “Saccharomonospora internatus comb. nov.” was proposed by Kurup and Greiner-Mai, but the nomenclatural change has not been validly published. Although the inclusion of M. internatus in the genus Saccharomonospora has not being established, the synonymy of “Saccharomonospora internatus” and S. viridis was proposed by Greiner-Mai. A number of recent publications regarded M. internatus as a synonym of S. viridis, but the name M. internatus is still used in some cases instead of S. viridis. This is because of the complicated history of M. internatus and S. viridis, but it is different from the generally accepted view of prokaryotic taxonomy. To clearly verify the synonymy of M. internatus and S. viridis, a literature review and experimental verification were conducted in this study. Based on the genomic and phenotypic characteristics obtained in this study, the synonymy of the two species was obvious. The emended description of S. viridis is given. © 2017 by The Korean Society for Microbiology and Biotechnology.


Cho Y.-J.,ChunLab Inc | Tannock G.W.,University of Otago | Yoon S.S.,Yonsei University
Applied and Environmental Microbiology | Year: 2013

Evidence suggests that gut microbes colonize the mammalian intestine through propagation as an adhesive microbial community. A bacterial artificial chromosome (BAC) library of murine bowel microbiota DNA in the surrogate host Escherichia coli DH10B was screened for enhanced adherence capability. Two out of 5,472 DH10B clones, 10G6 and 25G1, exhibited enhanced capabilities to adhere to inanimate surfaces in functional screens. DNA segments inserted into the 10G6 and 25G1 clones were 52 and 41 kb and included 47 and 41 protein-coding open reading frames (ORFs), respectively. DNA sequence alignments, tetranucleotide frequency, and codon usage analysis strongly suggest that these two DNA fragments are derived from species belonging to the genus Bacteroides. Consistent with this finding, a large portion of the predicted gene products were highly homologous to those of Bacteroides spp. Transposon mutagenesis and subsequent experiments that involved heterologous expression identified two operons associated with enhanced adherence. E. coli strains transformed with the 10a or 25b operon adhered to the surface of intestinal epithelium and colonized the mouse intestine more vigorously than did the control strain. This study has revealed the genetic determinants of unknown commensals (probably resembling Bacteroides species) that enhance the ability of the bacteria to colonize the murine bowel. © 2013, American Society for Microbiology.


Yi H.,Institute of Molecular Biology and Genetics | Cho Y.-J.,Chunlab Inc. | Yoon S.-H.,Seoul National University | Park S.-C.,Seoul National University | And 3 more authors.
FEMS Microbiology Letters | Year: 2012

A group of bacterial strains formerly known as CDC group M-5 are opportunistic pathogens to humans. In 1993, a name, Neisseria weaveri, was proposed by two independent studies to harbor CDC group M-5 strains, namely N. weaveri Holmes et al. 1993 and N. weaveri Andersen et al. 1993, with two different 'type' strains. However, no study has been conducted on to the relatedness of the two 'type' strains, although the close relationship of the two taxa has long been accepted unofficially. Formally, the status of the name N. weaveri Andersen et al. 1993 is illegitimate because it is a later homonym of N. weaveri Holmes et al., 1993; but the name of the strain is still validly published. In this study, we attempt to resolve the confusion caused by the apparent duplication of the species N. weaveri (with different type strains) using whole genome shotgun sequencing. We also sought to gain insight into the genetic characteristics of N. weaveri by conducting comparative genomics. On the basis of genomic similarities revealed through a comparative genomic study, we propose that N. weaveri Andersen et al. 1993 should be re-classified as a later heterotypic synonym of N. weaveri Holmes et al., 1993. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.


Kim B.-S.,ChunLab Inc. | Yi H.,Korea University | Chun J.,ChunLab Inc. | Chun J.,Seoul National University | Cha C.-J.,Chung - Ang University
Gut Pathogens | Year: 2014

Background: Staphylococcus aureus is a pathogen that causes food poisoning and community-associated infection with antibiotic resistance. This species is an indigenous intestinal microbe found in infants and not found in adult intestine. The relatively small genome size and rapid evolution of antibiotic resistance genes in the species have been drawing an increasing attention in public health. To extend our understanding of the species and use the genome data for comparative genomic studies, we sequenced the type strain of S. aureus subsp. aureus DSM 20231T. Results: Seventeen contigs were generated using hybrid assembly of sequences derived from the Roche 454 and Illumina systems. The length of the genome sequence was 2,902,619 bases with a G + C content of 32.8%. Among the 2,550 annotated CDSs, 44 CDSs were annotated to antibiotic resistance genes and 13 CDSs were related to methicillin resistance. It is interesting to note that this strain was first isolated in 1884 before methicillin was generally used on patients. Conclusions: The present study analyzed the genome sequence of S. aureus subsp. aureus type strain as the reference sequence for comparative genomic analyses of clinical isolates. Methicillin resistance genes found in the genome indicate the presence of antibiotic resistance mechanism prior to the usage of antibiotics. Further comparative genomic studies of methicillin-resistant strains based on this reference genome would help to understand the evolution of resistance mechanism and dissemination of resistance genes. © 2014 Kim et al.; licensee BioMed Central Ltd.


Shin S.-K.,Korea University | Hwang C.Y.,Korea Polar Research Institute | Cho Y.-J.,ChunLab Inc. | Yi H.,Korea University
Systematic and Applied Microbiology | Year: 2015

Serpens flexibilis was proposed in 1977 and approved in 1980 without the 16S rRNA gene sequence information. The sequence of S. flexibilis became available in 2010, after the publication of Pseudomonas tuomuerensis in 2009. Our preliminary phylogenetic analyses indicated that these two strains share high sequence similarity and therefore showed strong potential to be united into a single species. To clarify the taxonomic status of the two species, a polyphasic taxonomy study was conducted including whole genome sequencing. The value of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the genome sequences of S. flexibilis ATCC 29606T and P. tuomuerensis JCM 14085T were 98.1% and 89.0%, respectively. The phenotypic and chemotaxonomic properties including enzymatic activities, substrate utilization profiles, and fatty acids, supported that the two taxa have no pronounced difference and should thus constitute a single species. Therefore, we propose to transfer Serpens flexibilis Hespell 1977 to the genus Pseudomonas as Pseudomonas flexibilis comb. nov. (type strain=ATCC 29606T), with Pseudomonas tuomuerensis Xin et al. 2009 as a later heterotypic synonym of Pseudomonas flexibilis. © 2015 Elsevier GmbH.


PubMed | ChunLab Inc., Korea University and Korea Polar Research Institute
Type: Journal Article | Journal: Systematic and applied microbiology | Year: 2015

Serpens flexibilis was proposed in 1977 and approved in 1980 without the 16S rRNA gene sequence information. The sequence of S. flexibilis became available in 2010, after the publication of Pseudomonas tuomuerensis in 2009. Our preliminary phylogenetic analyses indicated that these two strains share high sequence similarity and therefore showed strong potential to be united into a single species. To clarify the taxonomic status of the two species, a polyphasic taxonomy study was conducted including whole genome sequencing. The value of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the genome sequences of S. flexibilis ATCC 29606(T) and P. tuomuerensis JCM 14085(T) were 98.1% and 89.0%, respectively. The phenotypic and chemotaxonomic properties including enzymatic activities, substrate utilization profiles, and fatty acids, supported that the two taxa have no pronounced difference and should thus constitute a single species. Therefore, we propose to transfer Serpens flexibilis Hespell 1977 to the genus Pseudomonas as Pseudomonas flexibilis comb. nov. (type strain=ATCC 29606(T)), with Pseudomonas tuomuerensis Xin et al. 2009 as a later heterotypic synonym of Pseudomonas flexibilis.


PubMed | Chunlab Inc. and Korea University
Type: | Journal: Journal of microbiology and biotechnology | Year: 2016

Transfer of


Lim J.-A.,South Korean National Institute of Animal Science | Lee D.H.,South Korean National Institute of Animal Science | Kim B.-Y.,CHUNLAB INC | Heu S.,South Korean National Institute of Animal Science
Journal of Biotechnology | Year: 2014

Pantoea agglomerans R190, isolated from an apple orchard, showed antibacterial activity against various spoilage bacteria, including Pectobacterium carotovorum subsp. carotovorum, and foodborne pathogens such as Escherichia coli O157:H7. Here, we report the genome sequence of P. agglomerans R190. This report will raise the value of P. agglomerans as an agent for biocontrol of disease. © 2014.


PubMed | Yonsei University, ChunLab Inc. and Korea University
Type: | Journal: BMC infectious diseases | Year: 2015

Infection by pathogenic viruses results in rapid epithelial damage and significantly impacts on the condition of the upper respiratory tract, thus the effects of viral infection may induce changes in microbiota. Thus, we aimed to define the healthy microbiota and the viral pathogen-affected microbiota in the upper respiratory tract. In addition, any association between the type of viral agent and the resultant microbiota profile was assessed.We analyzed the upper respiratory tract bacterial content of 57 healthy asymptomatic people (17 health-care workers and 40 community people) and 59 patients acutely infected with influenza, parainfluenza, rhino, respiratory syncytial, corona, adeno, or metapneumo viruses using culture-independent pyrosequencing.The healthy subjects harbored primarily Streptococcus, whereas the patients showed an enrichment of Haemophilus or Moraxella. Quantifying the similarities between bacterial populations by using Fast UniFrac analysis indicated that bacterial profiles were apparently divisible into 6 oropharyngeal types in the tested subjects. The oropharyngeal types were not associated with the type of viruses, but were rather linked to the age of the subjects. Moraxella nonliquefaciens exhibited unprecedentedly high abundance in young subjects aged <6 years. The genome of M. nonliquefaciens was found to encode various proteins that may play roles in pathogenesis.This study identified 6 oropharyngeal microbiome types. No virus-specific bacterial profile was discovered, but comparative analysis of healthy adults and patients identified a bacterium specific to young patients, M. nonliquefaciens.


PubMed | Chunlab Inc., Korea Institute of Energy Research and Korea Advanced Institute of Science and Technology
Type: | Journal: Scientific reports | Year: 2016

The hyperthermophilic archaeon Thermococcus onnurineus NA1 can grow and produce H2 on carbon monoxide (CO) and its H2 production rates have been improved through metabolic engineering. In this study, we applied adaptive evolution to enhance H2 productivity. After over 150 serial transfers onto CO medium, cell density, CO consumption rate and H2 production rate increased. The underlying mechanism for those physiological changes could be explained by using multi-omics approaches including genomic, transcriptomic and epigenomic analyses. A putative transcriptional regulator was newly identified to regulate the expression levels of genes related to CO oxidation. Transcriptome analysis revealed significant changes in the transcript levels of genes belonging to the categories of transcription, translation and energy metabolism. Our study presents the first genome-scale methylation pattern of hyperthermophilic archaea. Adaptive evolution led to highly enhanced H2 productivity at high CO flow rates using synthesis gas produced from coal gasification.

Loading Chunlab Inc. collaborators
Loading Chunlab Inc. collaborators