Entity

Time filter

Source Type


Zhao J.,Lady Davis Institute for Medical Research | Young Y.K.,Lady Davis Institute for Medical Research | Fradette J.,Chu Of Quebec Research Centreqc | Fradette J.,Laval University | And 2 more authors.
American Journal of Physiology - Renal Physiology | Year: 2015

The efficacy of cell therapy for many diseases can be limited by the poor survival of implanted cells in an environment of tissue injury. Melatonin has been reported to have antioxidative and antiapoptotic effects. Adipose tissue-derived mesenchymal stromal cells (ASCs), cells easily obtained in high amounts and with minimal discomfort, have shown great promise in cell therapy applications, such as in acute kidney injury. We hypothesized that melatonin pretreatment of human ASCs (hASCs) would improve their renoprotective and prosurvival effects. We therefore investigated the action of melatonin on hASCs, as well as the effect of the resulting hASCs-conditioned media (CM) on human kidney cells exposed to oxidative and apoptotic injury-provoking doses of cisplatin. Our results demonstrated that pretreatment of hASCs with melatonin, 100 μM for 3 h, significantly increased their proliferation and their expression of prosurvival P-Erk1/2 and P-Akt, and of antioxidative enzymes catalase and heme oxygenase (HO)-1. In addition, the CM from hASCs pretreated with melatonin provoked a significantly higher proliferation and migration of HK-2 human kidney epithelial cells. Furthermore, this CM exerted significantly higher prosurvival and antiapoptotic actions on HK-2 cells exposed to cisplatin in vitro. Western blot analysis showed higher expression of P-Erk1/2, Bcl-2, SOD-1, and HO-1 in the HK-2 cells exposed to cisplatin in the presence of CM from melatonin-pretreated hASCs. In sum, our study revealed that in vitro pretreatment of hASCs with melatonin may significantly enhance their survival and their therapeutic effectiveness on injured tissue. © 2015 American Physiological Society. All rights reserved. Source


Aubin K.,Chu Of Quebec Research Centreqc | Safoine M.,Chu Of Quebec Research Centreqc | Proulx M.,Chu Of Quebec Research Centreqc | Tetu F.A.,Clinique de Chirurgie Esthetique Felix Andre Tetu and CHU de QuebecQC | And 3 more authors.
PLoS ONE | Year: 2015

Representative modelling of human adipose tissue functions is central to metabolic research. Tridimensional models able to recreate human adipogenesis in a physiological tissue-like context in vitro are still scarce. We describe the engineering of white adipose tissues reconstructed from their cultured adipose-derived stromal precursor cells. We hypothesize that these reconstructed tissues can recapitulate key functions of AT under basal and pro-inflammatory conditions. These tissues, featuring human adipocytes surrounded by stroma, were stable and metabolically active in long-term cultures (at least 11 weeks). Secretion of major adipokines and growth factors by the reconstructed tissues was determined and compared to media conditioned by human native fat explants. Interestingly, the secretory profiles of the reconstructed adipose tissues indicated an abundant production of leptin, PAI-1 and angiopoietin-1 proteins, while higher HGF levels were detected for the human fat explants. We next demonstrated the responsiveness of the tissues to the proinflammatory stimulus TNF-α, as reflected by modulation of MCP-1, NGF and HGF secretion, while VEGF and leptin protein expression did not vary. TNF-α exposure induced changes in gene expression for adipocyte metabolism-associated mRNAs such as SLC2A4, FASN and LIPE, as well as for genes implicated in NF-κB activation. Finally, this model was customized to feature adipocytes representative of progressive stages of differentiation, thereby allowing investigations using newly differentiated or more mature adipocytes. In conclusion, we produced tridimensional tissues engineered in vitro that are able to recapitulate key characteristics of subcutaneous white adipose tissue. These tissues are produced from human cells and their neo-synthesized matrix elements without exogenous or synthetic biomaterials. Therefore, they represent unique tools to investigate the effects of pharmacologically active products on human stromal cells, extracellular matrix and differentiated adipocytes, in addition to compounds modulating adipogenesis from precursor cells. © 2015 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source

Discover hidden collaborations