Time filter

Source Type

Hørsholm, Denmark

Koster S.,TNO | Koster S.,Nestle | Leeman W.,TNO | Verheij E.,TNO | And 6 more authors.
Food and Chemical Toxicology

A main challenge in food safety research is to demonstrate that processing of foodstuffs does not lead to the formation of substances for which the safety upon consumption might be questioned. This is especially so since food is a complex matrix in which the analytical detection of substances, and consequent risk assessment thereof, is difficult to determine. Here, a pragmatic novel safety assessment strategy is applied to the production of non-selective extracts (NSEs), used for different purposes in food such as for colouring purposes, which are complex food mixtures prepared from reference juices. The Complex Mixture Safety Assessment Strategy (CoMSAS) is an exposure driven approach enabling to efficiently assess the safety of the NSE by focussing on newly formed substances or substances that may increase in exposure during the processing of the NSE. CoMSAS enables to distinguish toxicologically relevant from toxicologically less relevant substances, when related to their respective levels of exposure. This will reduce the amount of work needed for identification, characterisation and safety assessment of unknown substances detected at low concentration, without the need for toxicity testing using animal studies. In this paper, the CoMSAS approach has been applied for elderberry and pumpkin NSEs used for food colouring purposes. © 2015 Elsevier Ltd. Source

Jatkauskas J.,Lithuanian University of Health Sciences | Vrotniakiene V.,Lithuanian University of Health Sciences | Ohlsson C.,Chr. Hansen | Lund B.,Chr. Hansen
Agricultural and Food Science

The objective of the study was to investigate the effects of homofermentative and heterofermentative lactic acid bacteria (LAB) inoculants on fermentation and aerobic stability in a variety of crops and dry matter concentrations. The experiments were conducted with lucerne, ryegrass, ryegrass-timothy, red clover-ryegrass and whole crop maize using three additives in laboratory scale conditions. Each treatment and crop was replicated five times when determining the chemical composition and aerobic stability in the silage. The data were statistically analyzed as a randomized complete block by using the GLM procedure of SAS. Additive application reduced pH and formation of butyric acid, alcohols and ammonia-N in all crops compared with the untreated silage (p < 0.05). The use of additives increased the content of lactic acid except heterofermentative LAB in maize with 276 g kg-1 DM and increased the content of acetic acid except homofermentative LAB in ryegrass-timothy and maize with 276 g kg-1 DM compared with the untreated silage (p < 0.05). It was observed that the aerobic stability of silages was improved significantly (p < 0.05) by using homofermentative and heterofermentative LAB inoculants. Source

Bomholt J.,Copenhagen University | Moth-Poulsen K.,Copenhagen University | Harboe M.,Chr. Hansen | Karlson A.O.,Copenhagen University | And 4 more authors.

The aggregation of casein micelles (CMs) induced by milk-clotting enzymes is a process of fundamental importance in the dairy industry for cheese production; however, it is not well characterized on the nanoscale. Here we enabled the monitoring of the kinetics of aggregation between single CMs (30-600 nm in diameter) by immobilizing them on a glass substrate at low densities and subsequently imaging them with fluorescence microscopy. We validated the new method by a quantitative comparison to ensemble measurements of aggregation. Single-particle statistics allowed us to observe for the first time several heterogeneities in CM aggregation. We observed two types of CM growth: a slow increase in the size of CMs and a stepwise increase attributed to interactions between aggregates preformed in solution. Both types of growth exhibit a lag phase that was very heterogeneous between different CMs, suggesting significant differences in their composition or structure. Detailed size histograms of CMs during aggregation also revealed the presence of two distinct subpopulations with different growth amplitudes and kinetics. The depedence of these distinct nanoscale processes/parameters on aggregation conditions is not accessible to bulk measurements that report only ensemble-average values and may prove important to an in-depth understanding of CM aggregation. © 2011 American Chemical Society. Source

Chr. Hansen, Chr. Hansen Inc. and Chr. Hansens Laboratory Inc. | Date: 1982-02-02

Bacterial Concentrates for Addition to Animal Feeds or Feed Supplements.

Jensen M.L.,Copenhagen University | Thymann T.,Copenhagen University | Cilieborg M.S.,Copenhagen University | Cilieborg M.S.,Technical University of Denmark | And 8 more authors.
American Journal of Physiology - Gastrointestinal and Liver Physiology

Preterm birth, bacterial colonization, and formula feeding predispose to necrotizing enterocolitis (NEC). Antibiotics are commonly administered to prevent sepsis in preterm infants, but it is not known whether this affects intestinal immunity and NEC resistance. We hypothesized that broad-spectrum antibiotic treatment improves NEC resistance and intestinal structure, function, and immunity in neonates. Caesarean-delivered preterm pigs were fed 3 days of parenteral nutrition followed by 2 days of enteral formula. Immediately after birth, they were assigned to receive either antibiotics (oral and parenteral doses of gentamycin, ampicillin, and metronidazole, ANTI, n < 11) or saline in the control group (CON, n < 13), given twice daily. NEC lesions and intestinal structure, function, microbiology, and immunity markers were recorded. None of the ANTI but 85% of the CON pigs developed NEC lesions by day 5 (0/11 vs. 11/13, P < 0.05). ANTI pigs had higher intestinal villi (+60%), digestive enzyme activities (+53-73%), and goblet cell densities (+110%) and lower myeloperoxidase (-51%) and colonic microbial density (105 vs. 1010 colony-forming units, all P < 0.05). Microarray transcriptomics showed strong downregulation of genes related to inflammation and innate immune response to microbiota and marked upregulation of genes related to amino acid metabolism, in particular threonine, glucose transport systems, and cell cycle in 5-day-old ANTI pigs. In a follow-up experiment, 5 days of antibiotics prevented NEC at least until day 10. Neonatal prophylactic antibiotics effectively reduced gut bacterial load, prevented NEC, intestinal atrophy, dysfunction, and inflammation and enhanced expression of genes related to gut metabolism and immunity in preterm pigs. © 2014 the American Physiological Society. Source

Discover hidden collaborations