Time filter

Source Type

Gwangju, South Korea

Chosun University joseon daehakgyo) is one of the oldest and private universities in South Korea. Its campus is situated in Gwangju metropolitan city, in southwestern South Korea. The current president is Joen Ho-Jong. Around 33,000 students are enrolled. Wikipedia.

Lee S.H.,Chosun University
Molecules and cells | Year: 2010

The dynamic remolding of the actin cytoskeleton is a critical part of most cellular activities, and malfunction of cytoskeletal proteins results in various human diseases. The transition between two forms of actin, monomeric or G-actin and filamentous or F-actin, is tightly regulated in time and space by a large number of signaling, scaffolding and actin-binding proteins (ABPs). New ABPs are constantly being discovered in the post-genomic era. Most of these proteins are modular, integrating actin binding, protein-protein interaction, membrane-binding, and signaling domains. In response to extracellular signals, often mediated by Rho family GTPases, ABPs control different steps of actin cytoskeleton assembly, including filament nucleation, elongation, severing, capping, and depolymerization. This review summarizes structure-function relationships among ABPs in the regulation of actin cytoskeleton assembly.

Hwang H.-C.,Chosun University
Operations Research | Year: 2010

In this study, improved and new algorithms are developed for economic lot-sizing problems with integrated production and transportation operations. To model the economies of scale in production with the effect of shipment consolidation in transportation, we assume concave production costs and stepwise transportation costs. More specifically, we consider concave/fixed-charge/ nonspeculative cost functions in production, and nonstationary/stationary delivery cost functions in transportation. The cost functions in production are always assumed to be nonstationary. To achieve a cost-effective production and shipment schedule over time, inventories are considered for carrying and backlogging items. Efficient solution procedures are provided for all the models with or without backlogging under assumed cost structures. © 2010 INFORMS.

Kim T.,Chosun University
International Journal of Hydrogen Energy | Year: 2012

A fully-integrated micro PEM fuel cell system with a NaBH4 hydrogen generator was developed. The micro fuel cell system contained a micro PEM fuel cell and a NaBH4 hydrogen generator. The hydrogen generator comprised a NaBH4 reacting chamber and a hydrogen separating chamber. Photosensitive glass wafers were used to fabricate a lightweight and corrosion-resistant micro fuel cell and hydrogen generator. All of the BOP such as a NaBH4 cartridge, a micropump, and an auxiliary battery were fully integrated. In order to generate stable power output, a hybrid power management operating with a micro fuel cell and battery was designed. The integrated performance of the micro PEM fuel cell with NaBH4 hydrogen generator was evaluated under various operating conditions. The hybrid power output was stably provided by the micro PEM fuel cell and auxiliary battery. The maximum power output and specific energy density of the micro PEM fuel cell system were 250 mW and 111.2 W h/kg, respectively. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Chon S.-U.,Chosun University
Current Pharmaceutical Design | Year: 2013

Seeds and sprouts from legume crop plants have received attention as functional foods, because of their nutritive values including amino acid, fiber, trace elements, vitamins, flavonoids, and phenolic acids. Consumption of seeds and sprouts has become increasingly popular among people interested in improving and maintaining their health status by changing dietary habits. The seeds and sprouts are excellent examples of functional food defined as lowering the risk of various diseases and/or exerting health promoting effects in addition to its nutritive value. Phenolic compounds are considered as secondary metabolites that are synthesized by plants during normal development and in response to stress conditions, and the compounds occur ubiquitously in plants as the diversified group of phytochemicals derived from phenylalanine and tyrosine. Plant phenolics include simple phenols, phenolic acids, coumarins, flavonoids, stilbenes, hydrolyzable and condensed tannins, lignans, and lignins. In plant, phenolics may act as phytoalexins, antifeedants, attractants for pollinators, contributors to the plant pigmentation, antioxidants, and protective agents against UV light, among others. In food, phenolics may contribute to the bitterness, astringency, color, flavor, odor, and oxidative stability of products. In addition, health-protecting capacity of some and antinutritional properties of other plant phenolics are of great importance to producers, processors and consumers. Several researches were conducted to compare the content of phenolics and flavonoids, antioxidant activity and antioxidant enzyme activity from seeds and sprouts of legume plants. Total phenolics (TP) content and total flavonoids (TF) level were highest in soybean sprout extracts, followed by cowpea and mungbean sprout extracts (p < 0.05). DPPH (1, 1-diphenyl-2-picryl hydrazyl radical) free radical scavenging activity was higher in cowpea or mungbean sprouts than in soybean sprouts. Among antioxidant enzymes, ascorbate peroxidase (APX) and peroxidase (POX) activities were highest in cowpea sprouts and catalase (CAT) and superoxide dismutase (SOD) activities in soybean sprouts. During sprouting in mungbean, TP and TF levels significantly increased and improved free radical scavenging, tyrosinase inhibition, anticancer, and ADH (alcohol dehydrogenase) activities, showing higher contents and activities in sprouts than in seeds. Sprouting of seeds is known to increase the nutritive value such as phenolics and flavonoids and the health qualities of foods in a natural way. Phasic bioactive responses from dry seeds to 7-day-old seedlings of cowpea showed differential growth, contents of TP and TF, antioxidant activity and antioxidant enzyme activity. Plant length and weight of cowpea sprouts were significantly increased until 7 days after seeding. TP content, however, was highest in dry seed (DS) extracts of cowpea (63.9 mg kg-1), followed by imbibed seed (IS) (56.8 mg kg-1) and 1-day-old sprout (1DOS) (46.4 mg kg-1) extracts, and significantly reduced with increase of sprout age (p < 0.05). DPPH free radical scavenging activity was higher in DS or IS than in cowpea sprouts. APX, POX, and POX activities were highest in 7DOS and lowest in DS. SOD activity was lowest in DS and much higher in additional sprouting days. © 2013 Bentham Science Publishers.

Neointima, defined as abnormal growth of the intimal layer of blood vessels, is believed to be a critical event in the development of vascular occlusive disease. Although resveratrol's inhibitory effects on proliferation and migration of vascular smooth muscle cells has been reported, its activity on neointimal formation is still unclear. Oral administration of trans-resveratrol significantly suppressed intimal hyperplasia in a wire-injured femoral artery mouse model. In cultured vascular smooth muscle cells, trans-resveratrol inhibited platelet-derived growth factor-stimulated DNA synthesis and cell proliferation with down-regulation of cyclin D and pRB. Moreover, platelet-derived growth factor-induced production of reactive oxygen species was inhibited by trans-resveratrol and the compound induced heme oxygenase-1 (HO-1). The anti-proliferative activity of trans-resveratrol was reversed by an HO-1 inhibitor, ZnPPIX. Subcellular fractionation and reporter gene analyses revealed that trans-resveratrol increased the level of nuclear Nrf2 and antioxidant response element reporter activity, and that these were essential for the induction of HO-1. Trans-resveratrol also enhanced the activities of phosphatidyl inositol 3-kinase and extracellular signal regulated kinase, and phosphatidyl inositol 3-kinase was required for Nrf2/antioxidant response element-dependent HO-1 induction. These data have significant implications for the elucidation of the pharmacological mechanism by which trans-resveratrol prevents vascular occlusive diseases.

Discover hidden collaborations