Gwangju, South Korea
Gwangju, South Korea

Chonnam National University is a South Korean university located in the metropolitan city of Gwangju which lies in the middle of South Jeolla or Jeonnam province, for which the school is named in the Southwest of the country. The university was formally established in January, 1952 through the union of Gwangju Medical College, Gwangju Agricultural College, Mokpo Commerce College, and Daeseong College. It currently consists of 59 academic departments in 19 colleges and 11 graduate programs. University attached facilities are the University Library, Museum, Health Service Center, Agro-Bioindustry Technical Support Center, Animal Hospital, Language Education Center, School of Lifelong Education, and University Computing Center. In March 2006, Yeosu National University merged with Chonnam National University to become a satellite campus.Chonnam National University used to be generally regarded as one of the five major national universities of South Korea together with Seoul National University, Pusan National University, Kyungpook National University, and Chungnam National University. Now the number of the key national universities has been expanded into ten. CNU is also recognized as one of the best performers in government supported HRD projects. Research expenses of CNU ranks 13th nationally. Moreover, the number of High-ranking public officials ranked 11th. In addition, 26 alumni passed the Second Round of the 51st national bar exam, which is the biggest since the CNU Law School was established. Wikipedia.


Time filter

Source Type

Patent
Chonnam National University | Date: 2015-03-16

The present invention relates to a foldable case-integrated multi-device and a health management system using the same, in which health management and life management functions are implemented by introducing various sensors into a foldable case for a communication device. According to the present invention, a sensor module configured to measure biometric information is contained in a foldable case, and power supply, data processing and analysis, and display are implemented using internal components of the communication device, thereby providing a cutting-edge health care function while maintaining a communication device in a light, thin, short and small form.


Disclosed is a non-reducing end unsaturated mannuronic acid oligosaccharide having a molecular weight of 100-3000 Da, which is obtained by lysing polymannuronate as a substrate with alginate lyase, and provided are: a non-reducing end unsaturated mannuronic acid oligosaccharide; and pharmaceutical compositions for alleviating, preventing, or treating obesity, diabetes, and climacteric syndrome, and probiotics for promoting intestinal beneficial bacteria, the compositions and probiotics containing, as an active ingredient, the non-reducing end unsaturated mannuronic acid oligosaccharide, so that the antiobesity and antidiabetic effects, estrogen activity, and intestinal microflora controlling effect of the non-reducing end unsaturated mannuronic acid oligosaccharides are remarkably excellent as compared with non-reducing end saturated mannuronic acid oligosaccharides.


A method for preparing a catalyst having catalytically active materials selectively impregnated or supported only in the surface region of the catalyst particle using the mutual repulsive force of a hydrophobic solution and a hydrophilic solution and the solubility difference to a metal salt precursor between the hydrophobic and hydrophilic solutions. The hydrophobic solvent is a C2-C6 alcohol. The hydrophobic solvent is introduced into the catalyst support and then removed of a part of the pores connected to the outer part of the catalyst particle by drying under appropriate conditions. Then, a hydrophilic solution containing a metal salt is introduced to occupy the void spaces removed of the hydrophobic solvent, and the catalyst particle is dried at a low rate to selectively support or impregnate the catalytically active material or the precursor of the catalytically active material only in the outer part of the catalyst particle.


Patent
Chonnam National University | Date: 2015-12-31

Provided are a branched multi-peptide composition and a vaccine including the same. The branched multi-peptide vaccine according to the present invention is easy to be produced and utilized, thereby being easily applied to the treatment, and is capable of maintaining stable reaction in vivo, such that it is expected that the branched multi-peptide vaccine according to the present invention acts as an effective vaccine. Further, for the tumor antigen peptide, the present invention may select an antigen that is largely expressed in a malignant brain tumor. In addition, from now on, it is expected that tumor antigens having a large expression level may be analyzed depending on tumor characteristics of an individual patient, such that the branched multi-peptide vaccine according to the present invention may be utilized for producing personalized branched peptides and vaccines using the same.


The present invention relates to a gene delivery stent using titanium oxide thin film coating and a method for fabricating the gene delivery stent. The gene delivery stent according to the present invention may be loaded with a drug having anti-inflammatory and anti-thrombotic effects and simultaneously deliver a gene capable of inhibiting proliferation of vascular smooth muscle cells. Accordingly, late thrombosis and metal allergy may be reduced, and vascular restenosis in the stent region may be prevented, thereby making it possible to increase treatment effects of the bare metal stent.


Patent
Chonnam National University | Date: 2016-05-03

Provided is a composition for producing astringin among metabolites of polydatin, wherein the astringin may be mass-produced by oxidizing the polydatin using a CYP102A1 chimera and mutants thereof as a catalyst, the CYP102A1 chimera being produced by fusing a reductase domain of a wild-type CYP102A1 which is a bacterial cytochrome P450 enzyme, with a heme domain of a CYP102A1 mutant.


Patent
Chonnam National University | Date: 2016-07-29

A pharmaceutical composition and a method for preventing or treating a cardiovascular disease are provided. The pharmaceutical composition includes a BIO compound ((2Z,3E)-6-bromoindirubin-3-oxime) or a pharmaceutically acceptable salt thereof as an active ingredient. The pharmaceutical composition can specifically act on different types of cells constituting heart tissues, that is, can induce the growth of cardiomyocytes, and can also inhibit proliferation of cardiac fibroblasts and strongly suppress inflammatory mediators in macrophages, thereby significantly recovering the tissues and functions of the heart after the onset of myocardial infarction. Therefore, the pharmaceutical composition can be effectively used to treat various cardiovascular diseases including myocardial infarction.


Patent
Chonnam National University | Date: 2016-11-04

An ultraviolet light emitting device without the use of a p-type semiconductor layer is described. For generating ultraviolet light, an electron beam generator is provided, and an electron beam generated in the electron beam generator is guided to an active layer of an ultraviolet light generator. In the active layer, the electron beam suffers collisions, and electron-hole pairs generated by the collisions are confined in well layers due to barrier layers of the active layer. The confined electrons and holes generate ultraviolet light through recombination.


Park S.-Y.,Chonnam National University
Molecular Therapy | Year: 2014

MicroRNAs are increasingly implicated in the modulation of the progression of various cancers. We previously observed that KAI1 C-terminal interacting tetraspanin (KITENIN) is highly expressed in sporadic human colorectal cancer (CRC) tissues and hence the functional KITENIN complex acts to promote progression of CRC. However, it remains unknown that microRNAs target KITENIN and whether KITENIN-targeting microRNAs modulate CRC cell motility and colorectal tumorigenesis. Here, through bioinformatic analyses and functional studies, we showed that miR-124, miR-27a, and miR-30b negatively regulate KITENIN expression and suppress the migration and invasion of several CRC cell lines via modulation of KITENIN expression. Through in vitro and in vivo induction of mature microRNAs using a tetracycline-inducible system, miR-124 was found to effectively inhibit the invasion of CT-26 colon adenocarcinoma cells and tumor growth in a syngeneic mouse xenograft model. Constitutive overexpression of precursor miR-124 in CT-26 cells suppressed in vivo tumorigenicity and resulted in decreased expression of KITENIN as well as that of MYH9 and SOX9, which are targets of miR-124. Thus, our findings identify that KITENIN-targeting miR-124, miR-27a, and miR-30b function as endogenous inhibitors of CRC cell motility and demonstrate that miR-124 among KITENIN-targeting microRNAs plays a suppressor role in colorectal tumorigenesis.Molecular Therapy (2014); doi:10.1038/mt.2014.105.


Patent
Chonnam National University | Date: 2016-03-10

A light emitting diode and a method of manufacturing the light emitting diode are provided. The light emitting diode includes an n-type semiconductor layer, an inclined type superlattice thin film layer, an active layer, and a p-type semiconductor layer. The n-type semiconductor layer is disposed on a substrate. The inclined type superlattice thin film layer is disposed on the n-type semiconductor layer and includes a plurality of thin film pairs in which InGaN thin films and GaN thin films are sequentially stacked. The active layer having a quantum well structure is disposed on the inclined type superlattice thin film layer. The p-type semiconductor layer is disposed on the active layer. Composition ratio of Indium (In) included in the InGaN thin film is increased as getting closer to the active layer. Thus, internal residual strain is reduced, and quantum confinement effect is enhanced, and internal quantum efficiency is increased.

Loading Chonnam National University collaborators
Loading Chonnam National University collaborators