Chongqing, China
Chongqing, China

Chongqing University is a key national university located in Chongqing, China,and a member of the "Excellence League". Chongqing University is also one of the "Project 211 and Project 985” universities with full support in the construction and development from the central government and the Chongqing Municipal Government. Among its various departments, Chongqing University is especially highly ranked in the Built Environment, Engineering, Technology, and Business disciplines. Wikipedia.

Time filter

Source Type

Chongqing University, Chongqing University of Science and Technology | Date: 2016-09-22

A method of using a device for conducting a vascular hemodynamic bionic cell experiment is provided, the method comprises: firstly, experiment preparation; and secondly, experiment operation, namely, switching on a peristaltic pump, pumping a circulation liquid from a collection bottle into an independently corresponding shunting chamber of a corresponding shunting bottle through a collection bottle sampling tube of an independent chamber of a collection bottle, after shunting by the shunting chamber of the shunting bottle, the circulation liquid flowing out of a branch shunting tube flows to a corresponding flow chamber on the 1-3 flow chamber platforms placed side by side, and then converging the circulation liquid to a corresponding independent chamber of the collection bottle through respective sampling tubes of the flow chamber platforms. The method provided by the present disclosure has the technical characteristics of strong practicability and low manufacturing cost, and can perform a vascular hemodynamic bionic cell experiment under multiple conditions with multiple parameters when used in combination with different models of shunting bottles and flow chamber platforms.

Disclosed are a point contact gear based on conjugate curves, a meshing pair, and a machining tool therefor. The point contact gear comprises a convex gear and a concave gear which mesh with each other in one-point or multi-point contact, and a contact curve composed of meshing points on tooth surfaces of the convex gear and a contact curve composed of the meshing points on the concave gear are the conjugate curves. Further disclosed is a point contact gear meshing pair based on conjugate curves, a meshing method of the meshing pair is making both a convex gear tooth surface and a concave gear tooth surface in one-point or multi-point contact, and a contact track of the contact points on each of the tooth surfaces is a smooth space curve. The meshing characteristics of the conjugate curves are inherited; in addition, point contact tooth profiles are high in contact strength, high in load capacity, high in transmission efficiency and low in lubricating oil temperature rise, the sliding ratio is greatly lowered, and abrasion is low.

Residual tensile stresses often increase the susceptibility to cold cracking, and also promote brittle fracture, fatigue failure, and stress corrosion cracking in combination with tensile stresses experienced during service. Welding-induced deformation usually degrades the performance of a structure. Thus, the control of welding residual stress and distortion is a crucial task in welding manufacturing. There are too many factors that affect welding residual stresses and distortion. Besides material properties and design-related parameters, the welding procedures such as deposition sequence and assembly sequence also have significant influence on the final residual stress distribution and deformation. In this study, a computational approach based on Quick Welder software was developed to simulate the welding temperature field, residual stress distribution and deformation in multi-pass joints. The main objective was to clarify the influence of deposition sequence on the final residual stress distribution and deformation in an austenitic stainless steel tube-block joint with J-groove. The simulation results indicate that deposition sequence not only significantly affects the distribution of residual stress but also can alter the deformation mode to a certain extent. In addition, it was found that the last weld pass seems to have the largest contribution to the final welding residual stress filed of current tube-block joint. © 2013 Elsevier Ltd.

Liu R.,Chongqing University
Materials | Year: 2014

Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells. © 2014 by the authors.

Li X.-H.,Chongqing University
Physical Review A - Atomic, Molecular, and Optical Physics | Year: 2010

We present an efficient entanglement purification protocol with hyperentanglement in which additional spatial entanglement is utilized to purify the two-particle polarization-entangled state. The bit-flip error and phase-flip error can be corrected and eliminated in one step. Two remote parties can obtain maximally entangled polarization states deterministically and only passive linear optics are employed. We also discuss the protocol with practical quantum source and noisy channel. © 2010 The American Physical Society.

Ding B.,Chongqing University
IEEE Transactions on Fuzzy Systems | Year: 2011

This paper addresses the output feedback predictive control for a Takagi-Sugeno (T-S) fuzzy system with bounded noise. The controller optimizes an infinite-horizon objective function respecting the input and state constraints. The control law is parameterized as a dynamic output feedback that is dependent on the membership functions, and the closed-loop stability is specified by the notion of quadratic boundedness. Online algorithms that guarantee the recursive feasibility of the convex optimization problem and the convergence of the augmented state to a neighborhood of the equilibrium point are proposed in this paper. A numerical example is given to illustrate the effectiveness of the proposed output feedback controllers. © 2011 IEEE.

This paper considers stabilization of discrete-time linear systems, where network exists for transmitting the sensor and controller information, and arbitrary bounded packet loss occurs in the sensorcontroller link and the controlleractuator link. The stabilization of this system is transformed into the robust stabilization of a set of systems. The stability result for this system is specially applied on model predictive control (MPC) that explicitly considers the satisfaction of input and state constraints. Two synthesis approaches of MPC are presented, one parameterizing the infinite horizon control moves into a single state feedback law, the other into a free control move followed by the single state feedback law. Two simulation examples are given to illustrate the effectiveness of the proposed techniques. © 2011 Elsevier Ltd. All rights reserved.

This paper considers output feedback robust model predictive control for the quasi-linear parameter varying (quasi-LPV) system with bounded disturbance. The so-called quasi-LPV means that the varying parameters of the linear system are known at the current time, but unknown in the future. The control law is parameterized as a parameter-dependent dynamic output feedback, and the closed-loop stability is specified by the notion of quadratic boundedness. An iterative algorithm is proposed for the on-line synthesis of the control law via convex optimization. A numerical example is given to illustrate the effectiveness of the controller. © 2010 Elsevier Ltd. All rights reserved.

The invention belongs to magnesium alloy design field, and relates to a low-cost high-plasticity wrought magnesium alloy. The magnesium alloy is made from the raw materials with components as follows: between 0.10% and 1.00% by mass of tin, between 0.10% and 3.00% by mass of aluminum, between 0.10% and 1.00% by mass of manganese, and commercially pure magnesium and inevitable impurities in balance. The magnesium alloy is prepared by the steps of: melting magnesium and aluminum, adding tin and then adding microalloyed element manganese, stirring, refining, casting to form ingots followed by homogenized heat treatment, and extruding to obtain a corresponding profile; or directly extruding to obtain a corresponding profile without homogenization. The invention is characterized by controlling the content of the high-cost raw material tin through using the raw material aluminum that is low in cost and low in melting point to obtain a low-cost high-plasticity wrought magnesium alloy.

Chongqing University | Date: 2015-01-19

A system for reducing emission of nitrous oxide during sewage treatment, including: a regulating pool, a first aerobic constructed wetland, an anoxic pool, and a second aerobic constructed wetland. The water outlet of the regulating pool is connected to the water inlet of the top of the first aerobic constructed wetland via a pipe and a first control valve. The first aerobic constructed wetland includes sequencing batch constructed wetlands arranged in parallel. A branch pipe and a second control valve are disposed on the pipe between the regulating pool and the first aerobic constructed wetland. The outlet of the branch pipe and the water outlet of the first aerobic constructed wetland are combined together and connected to the water inlet of the bottom part of the anoxic pool. The anoxic pool is an upward flow biological filter.

Loading Chongqing University collaborators
Loading Chongqing University collaborators