Time filter

Source Type

Gao X.,Southwest University | Deng X.,Chongqing Medical University | Deng X.,Chongqing Key Laboratory of Oral Diseases and Biomedical science | Deng X.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education | And 4 more authors.
PLoS ONE | Year: 2016

Body image distress or body dissatisfaction is one of the most common consequences of obesity and overweight. We investigated the neural bases of body image processing in overweight and average weight young women to understand whether brain regions that were previously found to be involved in processing self-reflective, perspective and affective components of body image would show different activation between two groups. Thirteen overweight (O-W group, age = 20.31±1.70 years) and thirteen average weight (A-W group, age = 20.15±1.62 years) young women underwent functional magnetic resonance imaging while performing a body image self-reflection task. Among both groups, whole-brain analysis revealed activations of a brain network related to perceptive and affective components of body image processing. ROI analysis showed a main effect of group in ACC as well as a group by condition interaction within bilateral EBA, bilateral FBA, right IPL, bilateral DLPFC, left amygdala and left MPFC. For the A-W group, simple effect analysis revealed stronger activations in Thin-Control compared to Fat-Control condition within regions related to perceptive (including bilateral EBA, bilateral FBA, right IPL) and affective components of body image processing (including bilateral DLPFC, left amygdala), as well as self-reference (left MPFC). The O-W group only showed stronger activations in Fat-Control than in Thin-Control condition within regions related to the perceptive component of body image processing (including left EBA and left FBA). Path analysis showed that in the Fat-Thin contrast, body dissatisfaction completely mediated the group difference in brain response in left amygdala across the whole sample. Our data are the first to demonstrate differences in brain response to body pictures between average weight and overweight young females involved in a body image self-reflection task. These results provide insights for understanding the vulnerability to body image distress among overweight or obese young females. © 2016 Gao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Xu X.,Chongqing Medical University | Xu X.,Chongqing Key Laboratory of Oral Diseases and Biomedical science | Zhou J.,Chongqing Medical University | Zhou J.,Chongqing Key Laboratory of Oral Diseases and Biomedical science | And 4 more authors.
PLoS ONE | Year: 2016

Objective: To observe dynamic changes in root resorption repair, tooth movement relapse and alveolar bone microstructure following the application of orthodontic force. Materials and Methods: Forces of 20 g, 50 g or 100 g were delivered to the left maxillary firstmolars of fifteen 10- week-old rats for 14 days. Each rat was subjected tomicro-computed tomography scanning at 0, 3, 7, 10, 14, 28 and 42 days after force removal. The root resorption crater volume, tooth movement relapse and alveolar bone microarchitecture were measured at each time point. Results: From day 3 to day 14, the root resorption volume decreased significantly in each group. In the 20-g force group, the root resorption volume gradually stabilized after 14 days, whereas in the 50-g and 100-g force groups, it stabilized after 28 days. In all groups, toothmovement relapsed significantly from day 0 to day 14 and then remained stable. From day 3 to day 10, the 20-g group exhibited faster relapse than the 50-g and 100-g groups. In all groups, the structure model index and trabecular separation decreased slowly from day 0 to day 10 and eventually stabilized. Trabecular number increased slowly from day 0 to day 7 and then stabilized. Conclusions: The initial stage of root resorption repair did not change significantly and was followed by a dramatic repair period before stabilizing. The most serious tooth movement relapse occurred immediately after the appliance was removed, and then the tooth completely returned to the original position. © 2016 Xu et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Gao X.,Chongqing Medical University | Gao X.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education | Song J.,Chongqing Medical University | Song J.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education | And 7 more authors.
ACS Applied Materials and Interfaces | Year: 2016

The design and development of functional biomimetic systems for programmed stem cell response is a field of topical interest. To mimic bone extracellular matrix, we present an innovative strategy for constructing drug-loaded composite nanofibrous scaffolds in this study, which could integrate multiple cues from calcium phosphate mineral, bioactive molecule, and highly ordered fiber topography for the control of stem cell fate. Briefly, inspired by mussel adhesion mechanism, a polydopamine (pDA)-templated nanohydroxyapatite (tHA) was synthesized and then surface-functionalized with bone morphogenetic protein-7-derived peptides via catechol chemistry. Afterward, the resulting peptide-loaded tHA (tHA/pep) particles were blended with polycaprolactone (PCL) solution to fabricate electrospun hybrid nanofibers with random and aligned orientation. Our research demonstrated that the bioactivity of grafted peptides was retained in composite nanofibers. Compared to controls, PCL-tHA/pep composite nanofibers showed improved cytocompatibility. Moreover, the incorporated tHA/pep particles in nanofibers could further facilitate osteogenic differentiation potential of human mesenchymal stem cells (hMSCs). More importantly, the aligned PCL-tHA/pep composite nanofibers showed more osteogenic activity than did randomly oriented counterparts, even under nonosteoinductive conditions, indicating excellent performance of biomimetic design in cell fate decision. After in vivo implantation, the PCL-tHA/pep composite nanofibers with highly ordered structure could significantly promote the regeneration of lamellar-like bones in a rat calvarial critical-sized defect. Accordingly, the presented strategy in our work could be applied for a wide range of potential applications in not only bone regeneration application but also pharmaceutical science. © 2016 American Chemical Society.


PubMed | Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Peking University
Type: Journal Article | Journal: ACS applied materials & interfaces | Year: 2016

Nanohydroxyapatite (HA) synthesized by biomimetic strategy is a promising nanomaterial as bone substitute due to its physicochemical features similar to those of natural nanocrystal in bone tissue. Inspired by mussel adhesive chemistry, a novel nano-HA was synthesized in our work by employing polydopamine (pDA) as template under weak alkaline condition. Subsequently, the as-prepared pDA-templated HA (tHA) was introduced into polycaprolactone (PCL) matrix via coelectrospinning, and a bioactive tHA/PCL composite nanofiber scaffold was developed targeted at bone regeneration application. Our research showed that tHA reinforced PCL composite nanofibers exhibited favorable cytocompatibility at given concentration of tHA (0-10 w.t%). Compared to pure PCL and traditional nano-HA enriched PCL (HA/PCL) composite nanofibers, enhanced cell adhesion, spreading and proliferation of human mesenchymal stem cells (hMSCs) were observed on tHA/PCL composite nanofibers on account of the contribution of pDA present in tHA. More importantly, tHA nanoparticles exposed on the surface of composite nanofibers could further promote osteogenesis of hMSCs in vitro even in the absence of osteogenesis soluble inducing factors when compared to traditional HA/PCL scaffolds, which was supported by in vivo test as well according to the histological analysis. Overall, our study demonstrated that the developed tHA/PCL composite nanofibers with enhanced cytocompatibility and osteogenic capacity hold great potential as scaffolds for bone tissue engineering.


Zeng Y.,Chongqing Medical University | Zeng Y.,Chongqing Key Laboratory of Oral Diseases and Biomedical science | Zeng Y.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education | Pei X.,University of Sichuan | And 7 more authors.
Surface and Coatings Technology | Year: 2016

As novel nanomaterials, graphene and its derivations have been applied into hydroxyapatite as reinforcements for biomedical applications. However, graphene/hydroxyapatite composites serving as implant coating have rarely been studied. In this study, graphene oxide (GO)/hydroxyapatite (HA) composite coatings have been firstly fabricated by electrochemical deposition technique on titanium (Ti) substrate. Then, the microstructure, phase constituents, bonding strength and in vitro cellular responses of composite coatings were researched. Raman spectroscopy and transmission electron microscopy corroborated that graphene oxide was successfully incorporated into the composite coatings. Results revealed that addition of GO have enhanced both the crystallinity of deposited apatite particles and the bonding strength of the as-synthesized composite coatings. Moreover, in vitro cell culture assessment showed better biocompatibility of composite coatings compared with the pure HA coating and pure Ti substrate. These results suggested that GO/HA composite coatings might be a promising candidate in the field of biomaterials, especially for implant coatings. © 2015 Elsevier B.V.


Wang Q.,Chongqing Medical University | Wang Q.,Chongqing Key Laboratory of Oral Diseases and Biomedical science | Wang Q.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education | Ao Y.,Chongqing Medical University | And 3 more authors.
Oncology Reports | Year: 2016

Previous studies have shown that the aberrant expression of period circadian clock 2 (Per2) is closely related to the occurrence and development of cancers,but the specific mechanism remains unclear. In the present study,we used shRNA to downregulate Per2 in oral squamous cell carcinoma (OSCC) Tca8113 cells,and then detected the alterations in cell cycle,cell proliferation and apoptosis by flow cytometric analysis and mRNA expression alterations in all the important genes in the cyclin/cyclin-dependent protein kinase (CDK)/cyclin-dependent kinase inhibitor (CKI) cell cycle network by RT-qPCR. We found that in the Tca8113 cells,after Per2 downregulation,the mRNA expression levels of cyclin A2,B1 and D1,CDK4,CDK6 and E2F1 were significantly increased (P<0.05),the mRNA expression levels of p53,p16 and p21 were significantly decreased (P<0.05),cell proliferation was significantly higher (P<0.05),apoptosis was significantly lower (P<0.05) and the number of cells in the G1/G0 phase was significantly decreased (P<0.05). The present study proves that in OSCC,clock gene Per2 plays an important role in cell cycle progression and the balance of cell proliferation and apoptosis by regulation of the cyclin/CDK/CKI cell cycle network. Further research on Per2 may provide a new effective molecular target for cancer treatments.


Singh P.,Chongqing Medical University | Wang C.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education | Ajmera D.H.,Chongqing Medical University | Xiao S.S.,Chongqing Medical University | And 2 more authors.
Journal of Oral and Maxillofacial Surgery | Year: 2016

Purpose Surgically assisted mandibular arch expansion has proved to be an effective treatment modality in alleviating constriction and crowding issues. However, only mandibular symphyseal distraction osteogenesis has been in favor for the purpose of mandibular arch expansion. In addition, no relevant study has compared the biomechanical response of different osteotomy designs on mandibular expansion. The present study evaluated the effect of different osteotomy approaches and modes of loading on the expansion of the adult mandible using biomechanics. Materials and Methods To address the research purpose, 9 finite element (FE) models, including 2 novel osteotomy designs, were simulated. Stress, strain, and displacement of crown, root, and bone were calculated and compared under different osteotomy approaches and loading conditions. Results The biomechanical response envisaged by the FE models in terms of displacement on the X axis was consistent from the anterior to posterior teeth with parasymphyseal step osteotomy and a hybrid mode of force application. In addition, the amount of displacement predicted by parasymphyseal step osteotomy with the hybrid mode was greater compared with that of the other models. Conclusions The results of our study suggest parasymphyseal step osteotomy with the hybrid mode is a viable treatment option for true bony expansion in the adult mandible. © 2016 American Association of Oral and Maxillofacial Surgeons


Liu S.,Chongqing Medical University | Liu S.,Chongqing Key Laboratory for Oral Diseases and Biomedical science | Liu S.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education | Hu B.,Chongqing Medical University | And 9 more authors.
PLoS ONE | Year: 2016

Background With the popularity of minimally invasive surgery (MIS) in periodontics, numerous publications have evaluated the benefits of MIS with or without various regenerative biomaterials in the treatment of periodontal intra-bony defects. However, it is unclear if it is necessary to use biomaterials in MIS. Thus, we conducted a meta-analysis of randomized clinical trials in patients with intra-bony defects to compare the clinical outcomes of MIS with regenerative biomaterials for MIS alone. Methods The authors retrieved English publications on relevant studies from Cochrane CENTRAL, PubMed, Medline, Embase, Clinical Evidence, and ClinicalTrails.gov (up to June 30, 2015). The main clinical outcomes were the reduction of probing pocket depths (PPDs), gain of clinical attachment level (CAL), recession of gingival margin (REC) and radiographic bone fill. Review Manager 5.2 (Cochrane Collaboration, Oxford, England) was used to calculate the heterogeneity and mean differences of the main clinical outcomes. Results In total, 464 studies in the literature were identified but only four were ultimately feasible. The results showed no significant difference regarding CAL gain (P = 0.32) and PPD reduction (P = 0.40) as well as REC increase (P = 0.81) and radiographic bone fill (P = 0.64) between the MIS plus biomaterials group and the MIS alone group. Conclusions The meta-analysis suggested no significant difference in treatment of intra-bony defects between the MIS plus biomaterials group and the MIS alone group, indicating that it is important to take costs and benefits into consideration when a decision is made about a therapeutic approach. There needs to be an in-depth exploration of the induction of intrinsic tissue healing of MIS without biomaterials to achieve optimal outcomes. © 2016 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Pang L.,Chongqing Medical University | Pang L.,Chongqing Key Laboratory for Oral Diseases and Biomedical science | Zhao X.,Chongqing University | Liu W.,Chongqing Medical University | And 5 more authors.
Nutrients | Year: 2015

Bear bile was used as a traditional medicine or tonic in East Asia, and ursodeoxycholic acid (UDCA) is the most important compound in bear bile. Further, synthetic UDCA is also used in modern medicine and nutrition; therefore, its further functional effects warrant research, in vitro methods could be used for the fundamental research of its anticancer effects. In this study, the apoptotic effects of UDCA in human oral squamous carcinoma HSC-3 cells through the activation of caspases were observed by the experimental methods of MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay, DAPI (4’,6-diamidino-2-phenylindole) staining, flow cytometry analysis, RT-PCR (reverse transcription-polymerase chain reaction) assay and Western blot assay after HSC-3 cells were treated by different concentrations of UDCA. With 0 to 400 μg/mL UDCA treatment, UDCA had strong growth inhibitory effects in HSC-3 cells, but had almost no effect in HOK normal oral cells. At concentrations of 100, 200 and 400 μg/mL, UDCA could induce apoptosis compared to untreated control HSC-3 cells. Treatment of 400 μg/mL UDCA could induce more apoptotic cancer cells than 100 and 200 μg/mL treatment; the sub-G1 DNA content of 400 μg/mL UDCA treated cancer cells was 41.3% versus 10.6% (100 μg/mL) and 22.4% (200 μg/mL). After different concentrations of UDCA treatment, the mRNA and protein expressions of caspase-3, caspase-8, caspase-9, Bax, Fas/FasL (Fas ligand), TRAIL (TNF-related apoptosis-inducing ligand), DR4 (death receptor 4) and DR5 (death receptor 5) were increased in HSC-3 cells, and mRNA and protein expressions of Bcl-2 (B-cell lymphoma 2), Bcl-xL (B-cell lymphoma-extra large), XIAP (X-linked inhibitor of apoptosis protein), cIAP-1 (cellular inhibitor of apoptosis 1), cIAP-2 (cellular inhibitor of apoptosis 2) and survival were decreased. Meanwhile, at the highest concentration of 400 μg/mL, caspase-3, caspase-8, caspase-9, Bax, Fas/FasL, TRAIL, DR4, DR5, and IκB-α expression levels were the highest, and Bcl-2, Bcl-xL, XIAP, cIAP-1, cIAP-2, survival, and NF-κB expression levels were the lowest. These results proved that UDCA could induce apoptosis of HSC-3 cancer cells through caspase activation, and the higher concentration of UDCA had stronger effects in vitro. UDCA might be a good nutrient for oral cancer prevention. © 2015 by the authors; licensee MDPI, Basel, Switzerland.


PubMed | Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Chongqing Medical University
Type: Journal Article | Journal: Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons | Year: 2016

Surgically assisted mandibular arch expansion has proved to be an effective treatment modality in alleviating constriction and crowding issues. However, only mandibular symphyseal distraction osteogenesis has been in favor for the purpose of mandibular arch expansion. In addition, no relevant study has compared the biomechanical response of different osteotomy designs on mandibular expansion. The present study evaluated the effect of different osteotomy approaches and modes of loading on the expansion of the adult mandible using biomechanics.To address the research purpose, 9 finite element (FE) models, including 2 novel osteotomy designs, were simulated. Stress, strain, and displacement of crown, root, and bone were calculated and compared under different osteotomy approaches and loading conditions.The biomechanical response envisaged by the FE models in terms of displacement on the X axis was consistent from the anterior to posterior teeth with parasymphyseal step osteotomy and a hybrid mode of force application. In addition, the amount of displacement predicted by parasymphyseal step osteotomy with the hybrid mode was greater compared with that of the other models.The results of our study suggest parasymphyseal step osteotomy with the hybrid mode is a viable treatment option for true bony expansion in the adult mandible.

Loading Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education collaborators
Loading Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education collaborators