Time filter

Source Type

Zhang P.,Chongqing Medical University | Zhu S.,Chongqing Medical and Pharmaceutical College | Li Y.,Chongqing Medical University | Li Y.,Chongqing Engineering Research Center for Criminal Investigation Technology | And 9 more authors.
Journal of Proteomics | Year: 2016

Diffuse axonal injury (DAI) is fairly common during a traumatic brain injury (TBI) and is associated with high mortality. Making an early diagnosis, appropriate therapeutic decisions, and an accurate prognostic evaluation of patients with DAI still pose difficulties for clinicians. The detailed mechanisms of axonal injury after head trauma have yet to be clearly defined and no reliable biomarkers are available for early DAI diagnosis. Therefore, this study employed an established DAI animal model in conjunction with an isobaric tag for relative and absolute quantification (iTRAQ)-based protein identification/quantification approach. Alterations in rat cerebral protein expression were quantified using iTRAQ coupled LC-MS/MS, with differentially expressed proteins between the control groups, sham and sham-injured, and the injury groups, animals that died immediately post-injury and those sacrificed at 1 h, 6 h, 1 d, 3 d and 7 d post-injury, identified. A total of 1858 proteins were identified and quantified and comparative analysis identified ten candidate proteins that warranted further examination. Of the ten candidate DAI biomarkers, four proteins, citrate synthase (CS), synaptosomal-associated protein 25 (Snap25), microtubule-associated protein 1B (MAP1B) and Rho-associated protein kinase 2 (Rock2), were validated by subsequent Western blot and immunohistochemistry analyses. Our studies not only identified several novel biomarkers that may provide insight into the pathophysiological mechanisms of DAI, but also demonstrated the feasibility of iTRAQ-based quantitative proteomic analysis in cerebral tissue research. © 2015 Elsevier B.V.


Zhao M.-Z.,Chongqing Medical University | Zhao M.-Z.,Chongqing Engineering Research Center for Criminal Investigation Technology | Li Y.-G.,Chongqing Medical University | Li Y.-G.,Chongqing Engineering Research Center for Criminal Investigation Technology | And 9 more authors.
International Journal of Legal Medicine | Year: 2016

In forensic medicine, the diagnosis of death due to neurogenic shock is considered to be an aporia, as lacking objective indicators and presenting atypical symptoms in autopsy. Medico-legal disputes and complaints occasionally result from this ambiguity. To explore potential objective indicators of neurogenic shock, we set up a model of neurogenic shock by applying an external mechanical force on the carotid sinus baroreceptor in rabbits. The serum atrial natriuretic peptide (ANP) level was measured by radioimmunoassay in the control group (n = 8), survival group (n = 15) and death group (n = 5) both before and after the insult. The serum ANP level showed a significant increase after the insult in the death group compared with the serum obtained before the insult (P = 0.006), while the serum ANP level after the insult in the survival group and control group was not statistically significant compared with the serum obtained before the insult (P = 0.332 and P = 0.492, respectively). To verify the repeatability of the model and the postmortem behavior of serum ANP, five healthy adult rabbits underwent the same procedure as the experimental group. The mortality rate was consistent with the former experiment (20 %). There were no significant changes in serum ANP level in vitro and in vivo (within 48 and 24 h, respectively). But there was a significant decrease in serum ANP level at 48 h postmortem in vivo (P = 0.001). A female patient who expired due to neurogenic shock during a hysteroscopy was reported. Neither fatal primary disease nor evidence for mechanical injuries or intoxication was found according to the autopsy. The serum ANP level was assayed as a supplementary indicator and was found to be three-fold higher than the normal maximum limit. Combined with the animal experiment, this case highlights that serum ANP has the potential to be an objective indicator for the diagnosis of death due to neurogenic shock. © 2016 Springer-Verlag Berlin Heidelberg


Li X.-B.,Shandong University of Political Science and Law | Wang Q.-S.,Institute of Forensic Science | Wang Q.-S.,Chongqing Engineering Research Center for Criminal Investigation Technology | Feng Y.,Institute of Forensic Science | And 9 more authors.
International Journal of Legal Medicine | Year: 2014

Forensic DNA analysis of sexual assault evidence requires unambiguous differentiation of DNA profiles in mixed samples. To investigate the feasibility of magnetic bead-based separation of sperm from cell mixtures using a monoclonal antibody against MOSPD3 (motile sperm domain-containing protein 3), 30 cell samples were prepared by mixing 104 female buccal epithelial cells with sperm cells of varying densities (103, 104, or 105 cells/mL). Western blot and immunofluorescence assays showed that MOSPD3 was detectable on the membrane of sperm cells, but not in buccal epithelial cells. After biotinylated MOSPD3 antibody was incubated successively with the prepared cell mixtures and avidin-coated magnetic beads, microscopic observation revealed that each sperm cell was bound by two or more magnetic beads, in the head, neck, mid-piece, or flagellum. A full single-source short tandem repeat profile could be obtained in 80 % of mixed samples containing 103 sperm cells/mL and in all samples containing ≥104 sperm cells/mL. For dried vaginal swab specimens, the rate of successful detection was 100 % in both flocked and cotton swabs preserved for 1 day, 87.5 % in flocked swabs and 40 % in cotton swabs preserved for 3 days, and 40 % in flocked swabs and 16.67 % in cotton swabs preserved for 10 days. Our findings suggest that immunomagnetic bead-based separation is potentially a promising alternative to conventional methods for isolating sperm cells from mixed forensic samples. © 2014 Springer-Verlag Berlin Heidelberg.

Loading Chongqing Engineering Research Center for Criminal Investigation Technology collaborators
Loading Chongqing Engineering Research Center for Criminal Investigation Technology collaborators