Pine Brook, NJ, United States
Pine Brook, NJ, United States

Chiral Photonics, Inc. is a photonics company based in Pine Brook, New Jersey, founded in 1999. The company is developing a new class of optical devices based on twisting glass optical fibers. These in-fiber devices aim to displace discrete optical elements such as lasers, filters and sensors. They benefit from optical fiber’s transmission efficiency, robustness and ease of integration.The company hopes that its manufacturing process, which is completely automated and scalable, will result, for example, in communications lasers that are fraction of the cost and three times more efficient than today’s semiconductor lasers. Chiral Photonics is also developing chirality in polymeric thin films which, for instance, would enable high quality projection displays. Wikipedia.


Time filter

Source Type

Patent
Chiral Photonics, Inc | Date: 2016-07-07

The inventive configurable optical fiber polarization mode coupler is capable of providing a low-loss, high-coupling coefficient interface with high accuracy and easy alignment between a plurality of optical fibers (or other optical devices) with a first channel-to-channel spacing, and an optical device having a plurality of closely-spaced waveguide interfaces with a second channel-to-channel spacing, where each end of the optical fiber coupler array is configurable to have different channel-to-channel spacing, each matched to a corresponding one of the first and second channel-to-channel spacing, and that are preferably optimized for use with photonic integrated circuits, such as coupling to dense optical input/output interfaces, wafer-level testing, etc. The novel optical coupler array includes a plurality of waveguides (at least one of which may optionally be polarization maintaining), that comprises at least one gradually reduced vanishing core fiber, at least in part embedded within a common housing structure. Advantageously, at least one embodiment of the present invention comprises a physically untappable secure optical fiber link component comprising at least one optical fiber polarization mode coupler configured as a pitch reducing optical fiber array (PROFA) interconnect.


Patent
Chiral Photonics, Inc | Date: 2017-03-15

A multichannel optical coupler array comprises a coupler housing structure and longitudinal waveguides. At least one of the longitudinal waveguides is a vanishing core waveguide. The coupler housing structure at a proximity to a first end has one of the following cross sectional configurations: a ring surrounding the longitudinal waveguides, or a structure with holes, at least one hole containing at least one of the longitudinal waveguides.


Grant
Agency: National Science Foundation | Branch: | Program: STTR | Phase: Phase II | Award Amount: 500.00K | Year: 2009

This Small Business Technology Transfer (STTR) Phase II project will develop a novel optical fiber sensor of temperature, pressure, extension, axial twist and various environmental factors, including liquid level, in harsh environments. The optical fiber sensor will be free of electromagnetic interference and of the hazard of igniting combustible fuels and will be capable of remotely monitoring temperatures up to and beyond 750 ýýC and of tolerating high-radiation levels. Conventional long period gratings fiber (LPGs) formed by exposing photosensitive doped optical fibers to patterned ultraviolet illumination cannot operate in harsh environments because of the fragility of the imprinted periodic structure. In contrast, the glass fiber in the dual-twist chiral fiber sensor (CFS) need not be photosensitive and will be chosen for its robustness. The chiral long-period grating (CLPG) structure of the CFS will be created in a glass-forming process in which signal and scaffolding optical fibers are twisted together to form a helix in the signal fiber as the fibers pass through a miniature oven. Transmission dips due to coupling of the light between the core and surrounding glass cladding by the chiral grating and their shift with environmental factors will be measured and calculated using an increasingly sophisticated sequence of perturbation theories. The CFS based on the dual-twist CLPG structure overcomes the disadvantages of the LPG and of the CFS based on twisting single birefringent fibers. If successful it is ideally suited for demanding applications such as found in nuclear reactors, outer space, and oil wells, as well as in medical diagnostics and treatment and in the automotive and aerospace industries. The CFS may therefore become a pervasive part of modern technology and everyday life which relies increasingly on sensing and automated decision making. By substantially raising the operation temperature of optical fiber sensors, substantial savings can be realized. Conventional power generators could run at higher temperatures where they are substantially more efficient and the recovery rate in oil reservoirs can be increased considerably. The use of high-temperature and radiation-resistant CFSs in nuclear power plants can make these facilities more efficient and safe. The enhanced range of conditions in which the CFS can function relative to conventional electrical and optical sensors will have an impact across the economy and will make the CFS a rapidly growing segment of the multi-billion dollar sensor market. The novel glass forming fabrication methods and computational approaches may find use in diverse fields including photonics, microfluidics and medical diagnostics.


Patent
Chiral Photonics, Inc | Date: 2012-04-09

The inventive high density optical packaging header apparatus, in various embodiments thereof, provides configurable, modular, and highly versatile solutions for simultaneously connecting multiple optical fibers/waveguides to optical-fiber-based electronic systems, components, and devices, and is readily usable in a variety of applications involving highly flexible and modular connection of multiple optical fibers/waveguides assembled in a header block configuration to optical-fiber-based system/component backplanes, while providing advantageous active and passive alignment features.


Patent
Chiral Photonics, Inc | Date: 2012-01-20

The inventive configurable chiral fiber sensor is readily configurable for use in a variety of applications (such as applications involving pressure and/or temperature sensing), and which is particularly suitable for applications in which the sensing of a presence or absence of the target sensed event (e.g., specific minimum pressure or minimum temperature) is required. Advantageously, the inventive configurable chiral fiber sensor utilizes light sources, photodetectors, and related devices for sensor interrogation.


Patent
Chiral Photonics, Inc | Date: 2012-01-20

The inventive configurable chiral fiber sensor with a tip-positioned sensing element, is readily configurable for use in a variety of applications (such as applications involving pressure, temperature, and even axial twist sensing), and is particularly suitable for applications requiring highly precise and accurate sensor readings within corresponding predefined limited sensing ranges. Advantageously, the inventive configurable chiral fiber sensor with a tip-positioned sensing element, is operable to utilize a wide variety of light sources, photodetectors, and related devices for sensor interrogation.


Patent
Chiral Photonics, Inc | Date: 2012-01-20

The inventive circular chiral fiber polarizer is operable to convert linearly polarized light to circularly polarized light, may be advantageously fabricated in an in-fiber manner and to comprise desirable extinction ratio characteristics, and may also serve as an interface between a sequentially positioned polarization maintaining (PM) fiber, and a single mode (SM) fiber.


Patent
Chiral Photonics, Inc | Date: 2012-01-20

The inventive chiral polarization preserving optical fiber utilizes a structure composed of specially positioned and configured single mode (SM) and conventional polarization maintaining (PM) fiber elements along with at least two novel circular chiral fiber polarizers (each operable to convert linearly polarized light to circularly polarized light), to preserve any arbitrary polarization state of light signals transmitted therethrough without the limitations and drawbacks of other polarization maintaining solutions. In another inventive embodiment thereof, the inventive chiral polarization preserving optical fiber is configured as an arbitrary polarization state maintaining light signal splitter.


Grant
Agency: National Science Foundation | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 150.00K | Year: 2012

This Small Business Innovation Research (SBIR) Phase I project will demonstrate the feasibility of a novel Pitch Reducing Optical Fiber Array (PROFA) technology to meet the demands of next-generation telecommunications, data centers and cloud computing. As signal rates increase above 10 Gb/s, designers are moving from electrical to optical lines for intra- and inter-chip communication to provide higher bandwidth density, lower power consumption and reduced transmission loss. The challenge of interfacing photonic integrated circuits (PICs) to data transport media has grown with the increased sophistication of integrated PICs. Standard optical fibers, which have an outer diameter, of 125 um need to be matched to planar waveguides with high numerical aperture spaced by approximately 30 um. Pushing this limit is critical to increasing the density of active elements on a chip, reducing overall system size, and lowering power requirements. State-of-the-art fiber connections, which utilize labor intensive v-grooves, can achieve 127 um one-dimensional spacing. There is currently no path to achieving the chip-limited density called for by the industry. In this Phase I SBIR, PROFAs will be developed that will propel optical connectivity to 30 um spacing and two-dimensional arrays with orders of magnitude higher density than is currently available. The broader impact/commercial potential of this project will be to solve a key bottleneck of connectivity between optical fibers and PICs to achieving exascale computing and high speed communications. It will accelerate the development of next-generation high performance computers by allowing the integration of more complex PICs into telecommunications equipment. This technology will thereby spur the creation of novel PICs which can truly exploit higher on-chip densities in applications that will demand hundreds of thousands of PROFAs. As photonics becomes more pervasive, moving beyond telecommunications into datacom, biomedical and a myriad of industrial and military applications, the need addressed by PROFAs for seamless integration of planar and fiber-based platforms, as well as disparate fiber interfaces, including multi-core fibers, will increase. This technology will enhance the integration of different families of materials and combine their unique strengths. The know-how developed in the course of this project will inform the development of other microformed fiber-based devices, including filters, lasers, sensors and isolators for applications ranging from monitoring nuclear radiation to early endoscopic detection of cancer. This technology is expected to enhance the competitiveness of the United States in the next generation of telecommunications and data processing equipment.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: | Award Amount: 150.00K | Year: 2012

This Small Business Innovation Research (SBIR) Phase I project will demonstrate the feasibility of a novel Pitch Reducing Optical Fiber Array (PROFA) technology to meet the demands of next-generation telecommunications, data centers and cloud computing. As signal rates increase above 10 Gb/s, designers are moving from electrical to optical lines for intra- and inter-chip communication to provide higher bandwidth density, lower power consumption and reduced transmission loss. The challenge of interfacing photonic integrated circuits (PICs) to data transport media has grown with the increased sophistication of integrated PICs. Standard optical fibers, which have an outer diameter, of 125 um need to be matched to planar waveguides with high numerical aperture spaced by approximately 30 um. Pushing this limit is critical to increasing the density of active elements on a chip, reducing overall system size, and lowering power requirements. State-of-the-art fiber connections, which utilize labor intensive v-grooves, can achieve 127 um one-dimensional spacing. There is currently no path to achieving the chip-limited density called for by the industry. In this Phase I SBIR, PROFAs will be developed that will propel optical connectivity to 30 um spacing and two-dimensional arrays with orders of magnitude higher density than is currently available.

The broader impact/commercial potential of this project will be to solve a key bottleneck of connectivity between optical fibers and PICs to achieving exascale computing and high speed communications. It will accelerate the development of next-generation high performance computers by allowing the integration of more complex PICs into telecommunications equipment. This technology will thereby spur the creation of novel PICs which can truly exploit higher on-chip densities in applications that will demand hundreds of thousands of PROFAs. As photonics becomes more pervasive, moving beyond telecommunications into datacom, biomedical and a myriad of industrial and military applications, the need addressed by PROFAs for seamless integration of planar and fiber-based platforms, as well as disparate fiber interfaces, including multi-core fibers, will increase. This technology will enhance the integration of different families of materials and combine their unique strengths. The know-how developed in the course of this project will inform the development of other microformed fiber-based devices, including filters, lasers, sensors and isolators for applications ranging from monitoring nuclear radiation to early endoscopic detection of cancer. This technology is expected to enhance the competitiveness of the United States in the next generation of telecommunications and data processing equipment.

Loading Chiral Photonics, Inc collaborators
Loading Chiral Photonics, Inc collaborators