Chipbond Technology Corporation

Kaohsiung, Taiwan

Chipbond Technology Corporation

Kaohsiung, Taiwan

Time filter

Source Type

Patent
Chipbond Technology Corporation | Date: 2015-03-10

A flexible substrate includes a circuit board, a flexible heat-dissipating structure and an adhesive. The circuit board has a substrate and a circuit layer formed on a top surface of the substrate, and the flexible heat-dissipating structure has a flexible supporting plate and a flexible heat-dissipating metal layer formed on a surface of the flexible supporting plate. The flexible heat-dissipating metal layer of the flexible heat-dissipating structure is connected with a bottom surface of the substrate by the adhesive. The circuit layer and the flexible heat-dissipating metal layer are made of same material.


A method for fabricating a inductor carrier comprises the steps of providing a substrate with a protective layer; forming a first photoresist layer on protective layer; patterning the first photoresist layer to form a first opening and first apertures; forming a first metal layer within first opening and first apertures; removing the first photoresist layer; forming a first dielectric layer on protective layer; forming a second photoresist layer on first dielectric layer; patterning the second photoresist layer to form a second aperture and a plurality of third apertures; forming a second metal layer within second aperture and third apertures; removing the second photoresist layer; forming a second dielectric layer on first dielectric layer; forming a third photoresist layer on second dielectric layer; patterning the third photoresist layer to form a fifth aperture and sixth apertures; forming a third metal layer within fifth aperture and sixth apertures.


Patent
Chipbond Technology Corporation | Date: 2014-10-16

A trace structure of fine-pitch pattern includes a connection portion, a first conductive wire portion and a second conductive wire portion, the first conductive wire portion comprises a first section and a second section connected to the first section, the first section connects to the connection portion, the second conductive wire portion comprises a third section and a fourth section connected to the third section, the third section connects to the connection portion, wherein an etching space closed on three sides is formed by the connection portion, the third section and the first section, a first spacing is defined between the third section and the first section, a second spacing is defined between the fourth section and the second section, wherein the first spacing is larger than the second spacing so as to make an metal layer within the etching space completely removed to avoid metal layer residues.


Patent
Chipbond Technology Corporation | Date: 2014-09-02

A semiconductor manufacturing process includes the following steps of providing a silicon substrate having at least one connection pad and a protection layer, forming a first seed layer having at least one first section and at least one second section, forming a first photoresist layer, forming a first buffer layer having a coupling portion and a cladding portion, removing the first photoresist layer, removing the second section of the first seed layer to form a first under bump metallurgy layer, forming a support layer on the protection layer and the first buffer layer, the first under bump metallurgy layer has a first ring wall, the first buffer layer has a second ring wall, wherein the first ring wall, the second ring wall and the cladding portion are cladded by the support layer, and forming a connection portion and covering the coupling portion with the connection portion.


Patent
Chipbond Technology Corporation | Date: 2014-06-27

A flexible substrate includes a base layer, a metallic layer, a solder mask layer and an identifying code, the metallic layer is disposed at a first surface of the base layer, the metallic layer comprises a plurality of traces and at least one bottom block used for defining marked position, wherein the traces and the at least one bottom block are covered with the solder mask layer, wherein above the perpendicular direction of the at least one bottom block of the metallic layer, a pre-marked area is defined on an exposing surface of the solder mask layer and by an outlined edge of the at least one bottom block, and the identifying code is formed within the pre-marked area of the solder mask layer.


Patent
Chipbond Technology Corporation | Date: 2016-09-29

A flexible substrate includes a circuit board, a flexible heat-dissipating structure and an adhesive. The circuit board has a substrate and a circuit layer formed on a top surface of the substrate, and the flexible heat-dissipating structure has a flexible supporting plate and a flexible heat-dissipating metal layer formed on a surface of the flexible supporting plate. The flexible heat-dissipating metal layer of the flexible heat-dissipating structure is connected with a bottom surface of the substrate by the adhesive. The circuit layer and the flexible heat-dissipating metal layer are made of same material.


Patent
Chipbond Technology Corporation | Date: 2014-01-27

A semiconductor manufacturing method includes providing a carrier; forming a first photoresist layer; forming plural core portions; removing the first photoresist layer; forming a second photoresist layer; forming a plurality of connection portions, each of the plurality of connection portions includes a first connection layer and a second connection layer and connects to each of the core portions to form a hybrid bump, wherein each of the first connection layers comprises a base portion, a projecting portion and an accommodating space, each base portion comprises an upper surface, each projecting portion is protruded to the upper surface and located on top of each core portion, each accommodating space is located outside each projecting portion, the second connection layers cover the projecting portions and the upper surfaces, and the accommodating spaces are filled by the second connection layers; removing the second photoresist layer to reveal the hybrid bumps.


Patent
Chipbond Technology Corporation | Date: 2015-06-11

A process for manufacturing a semiconductor package having a hollow chamber includes providing a bottom substrate having a bottom plate, a ring wall and a slot, wherein the ring wall and the bottom plate form the slot; forming an under ball metallurgy layer on a surface of the ring wall; bumping a plurality of solder balls on a surface of the under ball metallurgy layer, each of the solder balls comprises a diameter, wherein a spacing is spaced apart between two adjacent solder balls; performing reflow soldering to the solder balls for making the solder balls melting and interconnecting to form a connection layer; connecting a top substrate to the bottom substrate, wherein the lot of the bottom substrate is sealed by the top substrate to form a hollow chamber used for accommodating an electronic device.


Patent
Chipbond Technology Corporation | Date: 2014-01-06

A semiconductor manufacturing method includes providing a carrier having a metallic layer, wherein the metallic layer comprises a plurality of base areas and a plurality of outer lateral areas; forming a first photoresist layer; forming a plurality of bearing portions; removing the first photoresist layer to reveal the bearing portions, each bearing portion comprises a bearing surface having a first area and a second area; forming a second photoresist layer for revealing the first areas of the bearing surfaces; forming a plurality of connection portions, wherein the first areas of the bearing surfaces are covered by the connection portions to make each connection portion connect with each bearing portion to form a snap bump; removing the outer lateral areas of the metallic layer to make the base areas form a plurality of under bump metallurgy layers.


Patent
Chipbond Technology Corporation | Date: 2014-01-06

A semiconductor manufacturing method includes providing a substrate having a metallic layer that includes a first metal layer and a second metal layer, the first metal layer comprises plural base areas and plural first outer lateral areas, the second metal layer comprises plural second base areas and plural second outer lateral areas; forming a first photoresist layer; forming plural bearing portions; removing the first photoresist layer; forming a second photoresist layer; forming plural connection portions, each connection portion comprises a first connection layer and a second connection layer; removing the second photoresist layer to reveal the connection portions and the bearing portions; removing the first outer lateral areas; reflowing the second connection layers to form plural composite bumps; removing the second outer lateral areas to make the first base areas and the second base areas form plural under bump metallurgy layers.

Loading Chipbond Technology Corporation collaborators
Loading Chipbond Technology Corporation collaborators