Time filter

Source Type

Li S.S.,Chinese Institute of Microbiology and Epidemiology
Bing du xue bao = Chinese journal of virology / [bian ji, Bing du xue bao bian ji wei yuan hui] | Year: 2013

To confirm the hypothesis that the high frequency sequences of high throughput sequencing are the terminal sequences of the bacteriophage genome. An adaptor of specific sequence was linked to the end of the bacteriophage T3 genomic DNA, which was then subject to high throughput sequencing; as a control, the same T3 genomic DNA without adaptor was also analyzed by high throughput sequencing. The sequencing results were examined with bioinformatics software. Similar high throughput sequencing technique was applied to analyze the genomic sequence of N4-like bacteriophage IME11. Bioinformatics study showed that the sequences tagged with adaptors were consistent with the high frequency sequences without adaptor labeling. Our analysis also indicated that the end of the T4-like phage genome had specific sequences instead of random sequences, disagreeing with the previous assertion. Evidences were provided that N4-like bacteriophage had a particular terminal sequence: the left end of the genome was unique while the right end was permuted. The high throughput sequencing technique was convenient and practical to be used to simultaneously detect the terminal sequence and the complete sequence of bacteriophage genome. Source

Liu G.,Fudan University | Bi Y.,Chinese Institute of Microbiology and Epidemiology | Wang R.,St Jude Childrens Research Hospital | Wang X.,Shanghai JiaoTong University
Journal of Leukocyte Biology | Year: 2013

Autophagy (macroautophagy; "self-eating") is a degradation process, in which cytoplasmic content is engulfed and degraded by the lysosome. And, immunity is an important mechanism of the "self-defense" system. Autophagy has long been recognized as a stress response to nutrient deprivation. This will provide energy and anabolic building blocks to maintain cellular bioenergetic homeostasis. Thus, autophagy plays critical roles in regulating a wide variety of pathophysiological processes, including tumorigenesis, embryo development, tissue remodeling, and most recently, immunity. The latter shows that a self-eating (autophagy) process could regulate a self-defense (immune) system. In this review, we summarize the recent findings regarding the regulatory and mechanistic insights of the autophagy pathway in immunity. © Society for Leukocyte Biology. Source

Li N.,Chinese Institute of Microbiology and Epidemiology
Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine] | Year: 2012

To evaluate the protective performance of a positive pressure bio-protective clothing against viral aerosol. The suspension of indicating virus phage Phi-X174 was made for viral aerosol generating in a hermetic cabin. The diameter of viral aerosol particles were measured with a aerodynamics size analyzer. By adjusting the inner humidity of the cabin, the protective efficiency of the positive pressure bio-protective clothing against viral aerosol in high and low windshield conditions was determined with Andersen six-stage air sampler sampling and plage forming unit (PFU) counting, respectively. The mass median diameter of Phage Phi-X174 aerosol particles was about 0.922 μm and the background concentration is beyond 2 × 104 particles/m3. The protective efficiency of the clothing against phage Phi-X174 aerosol particles was above 99.9% under different test conditions with the range of viral aerosol concentration between 0 - 23 PFU/m3. Airflow (P = 0.84), environment humidity conditions (P = 0.33) and sampling time (P = 0.07) did not affect the protective efficiency statistically. The positive pressure bio-protective clothing provided a relatively high efficiency against phage Phi-X174 aerosol regardless of airflow rate, environment humidity and sampling time. Source

Liu J.,Chinese Institute of Microbiology and Epidemiology
Wei sheng wu xue bao = Acta microbiologica Sinica | Year: 2012

Anthrax, as a fulminating infectious disease, threatens human' s health seriously. Bacillus anthracis, the agent of anthrax, was classified into the second kinds of pathogenic microorganisms (one kind of the highly pathogenic microorganism) in the List of Human Pathogenic Microorganisms issued by the Chinese government. The spores formed by B. anthracis are potential material for biological warfare agent and biological terror. Therefore, it is very important and pressing to develop sensitive, efficient detection methods for the bacteria. For detection methods of B. anthracis, there are four types of targets : spores, vegetative cells, genes and anthrax toxin proteins. Among them, detection methods targeting spores and vegetative cells are developed. However, owing to disadvantages in specificity and clinical practicality, these methods are far from satisfaction. Detection methods targeting genes of B. anthracis are satisfactory in specificity and sensitivity, while it is short in clinical diagnosis. At the same time, the development of detection methods targeting anthrax toxin makes it possible to acquire information about main causative agent directly, which brings about great help in clinical diagnosis as well as epidemiology research. Herein, we summarized briefly detection methods of B. anthracis developed currently, investigated their application ranges and detection capacity, and discussed the development trend of related research, expecting favoring the profession developing detection methods of B. anthracis. Source

Chinese Institute of Microbiology, Epidemiology and The Second Military Medical University | Date: 2014-05-19

The present invention discloses a class of mercaptonicotinic acid compound and preparation method and use thereof; the general structural formula of the compound is as shown in Formula I. Experiment demonstrates that the mercaptonicotinic acid compound could inhibit activity of botulinum toxin endopeptidase and tetanus toxin endopeptidase in vitro, which has a significant protective effect on botulinum toxin poisoning in mice, and can be used for preparing medicine intended to prevent and/or treat botulism, as well as to prevent botulinum toxin exposure and tetanus.

Discover hidden collaborations