Entity

Time filter

Source Type


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENV.2013.WATER INNO&DEMO-1 | Award Amount: 9.23M | Year: 2014

The objective of INAPRO is to mobilise industry, member states and stakeholders to promote a new and innovative technical and technological approach right up to an Aquaponic system which allows a nearly emission free sustainable production and contributes remarkably to global food security for the 21st century. Considering that traditional Aquaponic systems, combining aquaculture and hydroponics, have a great potential in saving water and energy and recovering nutrients from wastewater by value chains, the project aims at a real breakthrough for these systems towards commercialization. This will be achieved by a) the model based optimisation of the system concept in respect to water consumption and quality, environmental impact, waste avoidance, CO2 release and nutrient recycling, energy efficiency, management efforts and finally costs and b) the integration of new technologies containing cutting edge approaches such as: 1) innovative one-way water supply for horticulture and water retrieval by condensation, 2) alternative water and energy sources, 3) optimized filter systems, 4) intelligent sensor and management network for an optimized system construction and operation. The viability of INAPRO systems will be proved in concept-based demonstration projects both in rural and in urban areas that offer a potential economic advantage while simultaneously reducing water and carbon footprint. The dissemination activities (to policy, public and end-users) will open new market opportunities and improve market access inside and outside Europe for producers and technology suppliers. These ambitions meet perfectly with the EU strategies under Europe 2020 to face the challenges of dramatic water resource developments in Europe and worldwide. The project supports particularly the Innovation Union with the EIP Water as one key initiative and further the Common Agricultural Policy and will consequently be closely connected to an EIP Action Group in agricultural water management.


Tian J.T.,Chinese Academy of Fishery Sciences
Genetics and molecular research : GMR | Year: 2012

Blood clams (Scapharca broughtonii) are widely cultivated and consumed in noutheast Asia. Forty-eight polymorphic microsatellite loci were developed for this clam using magnetic-bead hybridization enrichment. The number of alleles per locus ranged from 2 to 14. Polymorphism of these loci was assessed in 30 individuals from a population collected from coastal areas of Qingdao, China. The values of observed heterozygosity, expected heterozygosity and polymorphism information content per locus ranged from 0.1034 to 0.9655, from 0.1831 to 0.9208, and from 0.1638 to 0.8964, respectively. Forty-three of 48 loci conformed to Hardy-Weinberg equilibrium. These microsatellite loci would be useful for molecular genetic breeding, population genetics, genome mapping, and other relevant research on S. broughtonii.


Zheng X.H.,Chinese Academy of Fishery Sciences
Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji | Year: 2011

Based on a full-sib family, the genetic linkage map was constructed with 246 microsatellite and 306 SNP markers, which was used to detect the QTLs for standard length (SL), body depth (H), body thickness (BT), and the ratio of standard length and body depth (SLH) in mirror carp by GridQTL software. The results indicated that a total of 14 related QTLs distributed on the 7 linkage groups were obtained. Seven QTLs were related to standard length, of which the linkage groups of LG6, LG17, LG21, LG23, and LG35 were at 5% significant level, and linkage group LG1 and LG28 were at 1% significant level, which explained 6.6%-12.6% of the phenotypic variance. Three QTLs were identified for body depth on the linkage groups of LG17, LG23 and LG28 (P amp; 0.01), accounting for 11.6%, 12.7%, and 15.6% of the phenotypic variance, respectively. Two QTLs were associated with body thickness on the linkage of LG23 and LG28 (P amp; 0.05), which explained 8.6% and 7.2% of the phenotypic variation, respectively. Two QTLs were responsible for the ratio of standard length and body depth on the linkage of LG21 and LG35 (P amp; 0.05), both of which explained 8.2% of the phenotypic variance. The results provide a useful reference for further candidate gene research and molecular marker assisted selection in mirror carp.


Antimicrobial peptide plays an important role in fish immunity. The small molecular antimicrobial peptide Hepcidin in turbot was studied and reported in this paper. The Ferroportin 1 (FPN1) and Transferrin Receptor (TFR) genes, which are related to Hepcidin, were cloned in turbot. The characteristics of Hepcidin and its related genes were studied, including an analysis of the expression patterns and cloning of the Hepcidin promoter, the relationship between Hepcidin and NF-κB and the regulation of iron-metabolism. The results showed that the promoter of SmHepcidin contains the binding sites of NF-κB, and NF-κB may directly or indirectly receive feedback signals from SmHepcidin. In the liver, spleen and kidney, in which there was an increased SmHepcidin expression level, SmFPN1 dramatically decreased and SmTFR was also either decreased or exhibited no obvious change after bacterial/viral infection and an injection of exogenous Hepcidin protein. RNAi experiments in turbot kidney cells confirmed the expression changes of these gene patterns. Furthermore, the administration of exogenous Hepcidin protein, which regulates the level of chelatable iron in cells, further confirmed the function of Hepcidin in iron metabolism. It is speculated that the rapidly increased expression of SmHepcidin may induce changes in the expression of related genes, and that the in vivo chelatable iron concentration which participates in the antibacterial process was also changed when exogenous pathogens are present in turbot. It is suggested that SmHepcidin plays a defensive role against pathogenic infection. Copyright © 2012 Elsevier Ltd. All rights reserved.


Zhang X.,Chinese Academy of Fishery Sciences | Lowe S.B.,University of New South Wales | Gooding J.J.,University of New South Wales
Biosensors and Bioelectronics | Year: 2014

The loop-mediated isothermal amplification (LAMP) technique has the potential to revolutionize molecular biology because it allows DNA amplification under isothermal conditions and is highly compatible with point-of-care analysis. To achieve efficient genetic analysis of samples, the method of real-time or endpoint determination selected to monitor the biochemical reaction is of great importance. In this paper we briefly review progress in the development of monitoring methods for LAMP. © 2014 Elsevier B.V.

Discover hidden collaborations