China University of Petroleum - Beijing

www.cup.edu.cn
Beijing, China
SEARCH FILTERS
Time filter
Source Type

Patent
China National Petroleum Corporation, China University of Petroleum - Beijing and Green Technology Ltd Co. | Date: 2017-07-05

The present invention relates to a bimetallic mercaptan conversion catalyst for sweetening liquefied petroleum gas at a low temperature, which is prepared by using an Al_(2)O_(3)-SiO_(2) composite oxide as a carrier to support bimetallic active components vanadium and nickel. The bimetallic mercaptan conversion catalyst has a proper specific surface area and more metal active center sites, and has advantages of simple preparation, efficient mercaptan conversion even at a low temperature, and no saturation and polymerization of olefins. The bimetallic mercaptan conversion catalyst exhibits superior mercaptan conversion performance in LPG sweetening, has strong adaptability to starting materials, and can also nearly completely remove trace of carbonyl sulfide contained in LPG.


The present invention relates to the field of petrochemical drilling and discloses a drilling fluid additive composition. The composition contains rheological modifier, emulsifier and tackifier. Among them, the rheological modifier is dimer acid-organic amine copolymer comprising structural units from dimer acid, structural units from alkylamine and structural units from arylamine; the tackifier is modified polysiloxane nano-particles, and the modifying group Z on the polysiloxane nano-particles is


Patent
China University of Petroleum - Beijing | Date: 2016-09-07

The present invention provides a three dimensional nuclear magnetic resonance logging instrument based on multiple antenna excitation, including: a probe, an excitation transmitter and a bearing component; the probe includes magnet and multiple antennas arranged at outer side of the magnet, and the multiple antenna individually and independently provide feed; a holding cavity is provided in the bearing component, and the excitation transmitter is fixed in the holding cavity; and the excitation transmitter includes a transmitter framework and an excitation circuit; the transmitter framework and the bearing component are fixedly connected; and the excitation circuit is fixed on the transmitter framework, and is electrically connected with each of the multiple antennas for feeding the multiple antennas.


The present invention provides a nuclear magnetic resonance logging instrument probe with double-layered magnets and an antenna excitation method, the nuclear magnetic resonance logging instrument probe includes: a probe framework and a shielding layer arranged in the probe framework; a plurality of main magnets are provided above and below the shielding layer, respectively; central axes of the main magnets are parallel with each other, and distances between the central axes of each of the main magnets and a central axis of the probe framework are the same; a distance between central axes of any two main magnets is not smaller than a first preset value; and an antenna is provided at outer side of each main magnety. In the present invention, circumferential recognizing capability of the nuclear magnetic resonance logging instrument probe can be improved and three-dimensional (radial, axial and circumferential) stratum detection can be achieved.


The present invention provides a nuclear magnetic resonance logging instrument probe with multi-layered magnet and an antenna excitation method, the nuclear magnetic resonance logging instrument probe includes a probe skeleton, multiple magnet assemblies and a plurality of antennas; the probe skeleton is of a cylindrical shape, multiple magnet assemblies are distributed in the circumferential direction of the probe skeleton; the magnet assembly includes at least two layers of magnet arranged from top to bottom, the magnet is magnetized in a radial direction, two adjacent layers of magnet are magnetized in opposite directions; an antenna is arranged outside each magnet assembly, multiple antennas are independently fed. In the nuclear magnetic resonance logging instrument probe and antenna excitation method, through exciting different antennas, detection of stratum information at different azimuth angles is realized, which improves circumferential resolution of the probe, realize stratum detection in three dimensions along radius, axis and circumference.


The present invention provides a three-dimensional nuclear magnetic resonance logging instrument probe, a logging instrument and an antenna excitation method, where the probe includes: a probe framework, a magnet and an antenna; four magnets are uniformly distributed along a circumference of the probe framework, the magnets are magnetized in a radial direction of the probe framework, two magnets placed opposite to each other are magnetized from outside to inside, and the other two magnets placed opposite to each other are magnetized from inside to outside; in the probe framework, each of the magnets is provided with independently fed antennas; antennas corresponding to each of the magnets comprise a left antenna provided on one side of the corresponding magnet and a right antenna provided on the other side of the corresponding magnet; the left antenna and the right antenna corresponding to each magnet are electrically connected.


Patent
China University of Petroleum - Beijing | Date: 2016-09-07

The present invention provides a multi-azimuth nuclear magnetic resonance logging instrument and an antenna excitation method, the nuclear magnetic resonance logging instrument includes: a probe framework and a shielding layer arranged in the probe framework; a plurality of main magnets are provided above and below the shielding layer, respectively; central axes of the main magnets are parallel with each other, and distances between the central axes of each of the main magnets and a central axis of the probe framework are the same; a distance between central axes of any two main magnets is not smaller than a first preset value; and an antenna is provided at outer side of each main magnet, and a plurality of the antennas are fed independently. In the present invention, circumferential recognizing capability of the nuclear magnetic resonance logging instrument can be improved and three-dimensional (radial, axial and circumferential) stratum detection can be achieved.


Patent
China University of Petroleum - Beijing | Date: 2016-09-07

The present invention provides a multi-detecting depth nuclear magnetic resonance logging tool and probe, and an antenna excitation method, the probe of nuclear magnetic resonance logging tool includes: a housing, a magnet and an antenna array apparatus; the magnet is fixedly arranged in the housing; the antenna array apparatus includes at least two groups of antenna arrays distributed along circumference of the magnet, and each group of antenna arrays include N layers of independently fed antennas; k-th layer antenna is arranged between the magnet and (k+1)-th layer antenna, k=1, 2, . . . N1; the antenna is fixed on a support, and the support is fixedly connected to the housing. In the present invention, stratum information detection at different azimuth angles is achieved by exciting different antenna arrays, so that circumferential recognizing capability of nuclear magnetic resonance logging tool probe is improved and three-dimensional (radial, axial and circumferential) stratum detection is achieved.


Patent
China University of Petroleum - Beijing | Date: 2014-06-05

A hybrid method for capturing CO_(2 )from a gas mixture is provided, comprising a step of contacting the CO_(2 )containing gas mixture with a slurry consisting of a liquid medium, imidazole or imidazole derivative(s), and a metal-organic framework material (MOFs). For the slurry system, the mass fraction of the imidazole or imidazole derivative(s) in it ranging from 2 to 50% and the mass fraction of the metal-organic framework material in it ranging from 5 to 25%. In the technical solution provided in the present invention, through combining absorptive separation by the liquid solution in which the imidazole or imidazole derivative(s) is dissolved, adsorption separation by the MOF material suspended in the solution, and selective permeation separation by a liquid medium film forms on the outside surface of the suspended MOFs, an absorption-adsorption hybrid separation effect for CO_(2 )gas mixtures is efficiently achieved. In the CO_(2 )capture method provided in the present invention, conventional absorption separation and adsorptive separation technologies are effectively combined, furthermore, the addition of imidazole or imidazole derivative(s) substantially increases both the CO_(2 )capture ability and capture amount of the MOFs/liquid slurry, showing a great potential in industrial applications.


The present invention provides a method of restraining gas channeling phenomena during CO2 flooding process in the low-permeability fractured reservoirs through two-stage gas channeling blocking treatment so as to increase oil recovery. The two-stage gas channeling blocking technology includes first-stage gas channeling control to block off fractures using high-strength gel which is formed by natural modified polymeric materials, and second-stage gas channeling control to block off relatively high-permeability layers in the low permeability matrix using aliphatic amine. The gas channeling is effectively controlled and the swept volume is enlarged during the process of CO2 flooding in low permeability fractured reservoirs, and the oil recovery is greatly improved by two-stage gas channeling blocking technology.

Loading China University of Petroleum - Beijing collaborators
Loading China University of Petroleum - Beijing collaborators