Nanjing, China

China Pharmaceutical University is a university in Nanjing, China that specializes in the pharmaceutical science. Wikipedia.


Time filter

Source Type

RATIONALE:: Endothelial progenitor cells (EPCs) respond to SDF-1 through receptors CXCR7 and CXCR4. Whether SDF-1 receptors involves in diabetes induced EPCs dysfunction remains unknown. OBJECTIVE:: To determine the role of SDF-1 receptors in diabetic EPCs dysfunction. METHODS AND RESULTS:: CXCR7 expression, but not CXCR4 was reduced in EPCs from db/db mice, which coincided with impaired tube formation. Knockdown of CXCR7 impaired tube formation of EPCs from normal mice, while up-regulation of CXCR7 rescued angiogenic function of EPCs from db/db mice. In normal EPCs treated with oxidized low-density lipoprotein (ox-LDL) or high glucose (HG) also reduced CXCR7 expression, impaired tube formation and increased oxidative stress and apoptosis. The damaging effects of ox-LDL or HG were markedly reduced by SDF-1 pretreatment in EPCs transduced with CXCR7 lentivirus (CXCR7-EPCs) but not in EPCs transduced with control lentivirus (Null-EPCs). Most importantly, CXCR7-EPCs were superior to Null-EPCs for therapy of ischemic limbs in db/db mice. Mechanistic studies demonstrated that ox-LDL or HG inhibited Akt and GSK-3β phosphorylation, nuclear export of Fyn and nuclear localization of Nrf2, blunting Nrf2 downstream target genes HO-1, NQO-1 and catalase, and inducing an increase in EPC oxidative stress. This destructive cascade was blocked by SDF-1 treatment in CXCR7-EPCs. Furthermore, inhibition of PI3K/Akt prevented SDF-1/CXCR7-mediated Nrf2 activation and blocked angiogenic repair. Moreover, Nrf2 knockdown almost completely abolished the protective effects of SDF-1/CXCR7 on EPC function in vitro and in vivo. CONCLUSIONS:: Elevated expression of CXCR7 enhances EPC resistance to diabetes-induced oxidative damage and improves therapeutic efficacy of EPCs in treating diabetic limb ischemia. The benefits of CXCR7 are mediated predominantly by an Akt/GSK-3β/Fyn pathway via increased activity of Nrf2. © 2017 American Heart Association, Inc.


Chen M.,China Pharmaceutical University
International journal of nanomedicine | Year: 2011

The purpose of the present study was to elucidate the antimicrobial activity and mechanism of silver nanoparticles incorporated into thermosensitive gel (S-T-Gel) on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This study investigated the growth, permeability, and morphology of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa cells in order to observe the action of S-T-Gel on the membrane structure of these three bacteria. The cell morphology of normal and treated bacteria cells was assessed by transmission electron microscopy (TEM), and the effects of S-T-Gel on genome DNA of bacterial cells were evaluated by agarose gel electrophoresis. S-T-Gel showed promising activity against Staphylococcus aureus and moderate activity against Escherichia coli and Pseudomonas aeruginosa. The observation with TEM suggested that S-T-Gel may destroy the structure of bacterial cell membranes in order to enter the bacterial cell. S-T-Gel then condensed DNA and combined and coagulated with the cytoplasm of the damaged bacteria, resulting in the leakage of the cytoplasmic component and the eventual death of these three bacteria. In addition, the analysis of agarose gel electrophoresis demonstrated that S-T-Gel could increase the decomposability of genome DNA. These results about promising antimicrobial activity and mechanism of S-T-Gel may be useful for further research and development in in-vivo studies.


In this work, a rapid and simple method based on matrix solid-phase dispersion (MSPD) and ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed. Guge Fengtong preparation (GGFT), a traditional Chinese herbal medicine, was investigated for validation, and eight major constituents were determined including four saponins (protodioscin, protogracillin, pseudoprotodioscin and dioscin) and four gingerols (6-gingerol, 8-gingerol, 10-gingerol and 6-shogaol). Response surface methodology and desirability function were employed to optimize the extraction conditions, such as dispersant, dispersant/sample ratio, solvent concentration, and elution volume, of MSPD. Results showed that MSPD using C18 (1.75 g) as the dispersant material and methanol (89%, v/v) as the eluting solvent (12.00 mL) resulted in a high extraction efficiency. MSPD extraction had the advantages of combining extraction and clean-up in a single step, was less time consuming and required lower solvent volumes compared with conventional methods. Quantification of chemical compounds from GGFT preparations were performed using UPLC-MS/MS in multiple-reaction monitoring mode. The proposed method afforded a low limit of detection ranging from 0.02 to 0.40 ng for saponins and gingerols. For all the analytes, recoveries ranged from 80.9% to 103% and repeatabilities were acceptable with relative standard deviations of less than 6.81%. The proposed MSPD-UPLC-MS/MS method was successfully utilized to analyze five batches of GGFTs, and the results demonstrated that this method is simple, efficient and has potential to be applied for the quality control of herbal preparations.


Zhang B.,China Pharmaceutical University | Studer A.,University of Munster
Chemical Society Reviews | Year: 2015

Nitrogen heterocycles belong to a highly important class of compounds which are found in various natural products, biologically active structures, and medicinally relevant compounds. Therefore, there is continuing interest in the development of novel synthetic methods for the construction of nitrogen containing heterocycles. Recently, radical insertion reactions into isonitriles have emerged as an efficient and powerful strategy for the construction of nitrogen heterocycles, such as phenanthridines, indoles, quinolines, quinoxalines, and isoquinolines. This review highlights recent advances in this fast growing research area and also includes important pioneering studies in this area. © The Royal Society of Chemistry 2015.


The present invention relates to the field of natural pharmaceutical chemistry, and in particular, to a resveratrol dimer (7R,8R)-trans--viniferin (I), a preparation process therefor and a purpose thereof in lowering a blood sugar level. According to the present invention, an R type of resveratrol dimer is separated from the resveratrol dimer by using high-speed countercurrent chromatography. Pharmacodynamic tests proved that the R type of resveratrol dimer has a better effect in lowering a blood sugar level than a racemate.


The present invention relates to the field of natural pharmaceutical chemistry, and in particular, to a resveratrol dimer (7R,8R)-trans--viniferin (I), a preparation method therefor and a use thereof in reducing a blood sugar level. According to the present invention, an R type of resveratrol dimer is separated from the resveratrol dimer by using high-speed countercurrent chromatography. Pharmacodynamic tests proved that the R type of resveratrol dimer has a better effect in reducing a blood sugar level than a racemate.


Patent
China Pharmaceutical University | Date: 2014-01-07

The present invention relates to the field of medicinal chemistry, and in particular relates to 4-(five-membered heterocyclic pyrimidine/pyridine substituted) amino-1H-3-pyrazolecarboxamide derivatives, the preparation method thereof, pharmaceutical compositions containing these compounds and the medicinal use thereof, especially as protein kinase inhibitors for anti-tumour use.


Patent
China Pharmaceutical University | Date: 2014-10-15

The present invention relates to the field of medicine and particularly relates to the application of fluoxetine to the treatment of depigmentation diseases. Pharmacodynamic tests have demonstrated that fluoxetine has the effects of treating depigmentation diseases especially leukotrichia and vitiligo.


Patent
China Pharmaceutical University | Date: 2015-12-16

The present invention relates to the field of medicinal chemistry, and in particular relates to 4-(five-membered heterocyclic pyrimidine/pyridine substituted) amino-1H-3-pyrazolecarboxamide derivatives, the preparation method thereof, pharmaceutical compositions containing these compounds and the medicinal use thereof, especially as protein kinase inhibitors for anti-tumour use.


Disclosed are bifunctional fusion proteins having Tumstatin active fragments and CD137L extracellular regions. The proteins exhibit activities to inhibit the proliferation of human umbilical vein endothelial cells and to costimulate the proliferation of T cells. They can be used for the treatment of various tumor-related diseases and the regulation of angiogenesis and immunological effects in humans.

Loading China Pharmaceutical University collaborators
Loading China Pharmaceutical University collaborators