Entity

Time filter

Source Type


Wang Y.,Beihang University | Zhang Z.,Beihang University | Qin X.-Q.,China North Vehicle Research Institute
Journal of Central South University | Year: 2014

Variable pump driving variable motor (VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle (UGV). VPDVM is a dual-input single-output nonlinear system with coupling, which is difficult to control. High pressure automatic variables bang-bang (HABB) was proposed to achieve the desired motor speed. First, the VPDVM nonlinear mathematic model was introduced, then linearized by feedback linearization theory, and the zero-dynamic stability was proved. The HABB control algorithm was proposed for VPDVM, in which the variable motor was controlled by high pressure automatic variables (HA) and the variable pump was controlled by bang-bang. Finally, simulation of VPDVM controlled by HABB was developed. Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed, load and pump speed. © 2014 Central South University Press and Springer-Verlag Berlin Heidelberg. Source


HomChaudhuri B.,Clemson University | Lin R.,China North Vehicle Research Institute | Pisu P.,Clemson University
Transportation Research Part C: Emerging Technologies | Year: 2016

This paper presents a fuel efficient control strategy for a group of connected hybrid electric vehicles (HEVs) in urban road conditions. A hierarchical control architecture is proposed in this paper for every HEV, where the higher level and the lower level controller share information with each other and solve two different problems that aim at improving its fuel efficiency. The higher level controller of each HEV is considered to utilize traffic light information, through vehicle to infrastructure (V2I) communication, and state information of the vehicles in its near neighborhood, via vehicle to vehicle (V2V) communication. Apart from that, the higher level controller of each HEV uses the recuperation information from the lower level controller and provides it the optimal velocity profile by solving its problem in a model predictive control framework. Each lower level controller uses adaptive equivalent consumption minimization strategy (ECMS) for following their velocity profiles, obtained from the higher level controller, in a fuel efficient manner. In this paper, the vehicles are modeled in Autonomie software and the simulation results are provided in the paper that shows the effectiveness of the proposed control architecture. © 2015 Elsevier Ltd. Source


Xi J.,Beijing Institute of Technology | Chen Y.,China North Vehicle Research Institute
Mathematical Problems in Engineering | Year: 2013

In order to satisfy the character of parallel hybrid electric vehicle (PHEV) in some special driving cycles, a collision decision problem between the shift decision and power split ratio is proposed. Based on a large amount of experimental data the optimal decisions are determined with evidential reasoning theory. The proposed decision strategy has been verified through real road test of Chongqing public transportation line 818 and the fuel economic improvement has also been achieved. © 2013 JunQiang Xi and Yongdan Chen. Source


He Z.,China North Vehicle Research Institute | Li X.,CAS Institute of Mechanics | Liang X.,CAS Institute of Mechanics
Science China: Physics, Mechanics and Astronomy | Year: 2014

In spectral-like resolution-WENO hybrid schemes, if the switch function takes more grid points as discontinuity points, the WENO scheme is often turned on, and the numerical solutions may be too dissipative. Conversely, if the switch function takes less grid points as discontinuity points, the hybrid schemes usually are found to produce oscillatory solutions or just to be unstable. Even if the switch function takes less grid points as discontinuity points, the final hybrid scheme is inclined to be more stable, provided the spectral-like resolution scheme in the hybrid scheme has moderate shock-capturing capability. Following this idea, we propose nonlinear spectral-like schemes named weighted group velocity control (WGVC) schemes. These schemes show not only high-resolution for short waves but also moderate shock capturing capability. Then a new class of hybrid schemes is designed in which the WGVC scheme is used in smooth regions and the WENO scheme is used to capture discontinuities. These hybrid schemes show good resolution for small-scales structures and fine shock-capturing capabilities while the switch function takes less grid points as discontinuity points. The seven-order WGVC-WENO scheme has also been applied successfully to the direct numerical simulation of oblique shock wave-turbulent boundary layer interaction. © 2014 Science China Press and Springer-Verlag Berlin Heidelberg. Source


Cui Y.,China North Vehicle Research Institute | Kurfess T.R.,Georgia Institute of Technology
Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME | Year: 2015

In this paper, a nonlinear full car model considering the nonlinear and hysteretic characteristics of the shock absorber is developed. An approach to integrate the hybrid shock absorber model into the vehicle model using system identification techniques is then presented. To validate the approach, parameter identification of the nominal linear full car model and parameter identification of the full car model with nonlinear/hysteresis shock absorber force input are compared. The target vehicle is tested on an MTS Systems Corporation tire-coupled 4-post road simulator and the experimental data validate the system identification methods proposed in this paper. Copyright © 2015 by ASME. Source

Discover hidden collaborations