Entity

Time filter

Source Type


Hu G.,Nanjing Agricultural University | Lu F.,Nanjing Agricultural University | Zhai B.-P.,Nanjing Agricultural University | Lu M.-H.,China National Agro Tec Extension and Service Center | And 5 more authors.
PLoS ONE | Year: 2014

An effective control strategy for migratory pests is difficult to implement because the cause of infestation (i.e., immigration or local reproduction) is often not established. In particular, the outbreak mechanisms of the brown planthopper, Nilaparvata lugens (Stål), an insect causing massive losses in rice fields in the Yangtze River Delta in China, are frequently unclear. Field surveys of N. lugens were performed in Jiangsu and Zhejiang Provinces in 2008 to 2010 and related historical data from 2003 onwards were collected and analyzed to clarify the cause of these infestations. Results showed that outbreaks of N. lugens in the Yangtze River Delta were mostly associated with an extremely high increase in population. Thus, reproduction rather than immigration from distant sources were the cause of the infestations. Although mass migration occurred late in the season (late August and early September), the source areas of N. lugens catches in the Yangtze River Delta were mainly located in nearby areas, including the Yangtze River Delta itself, Anhui and northern Jiangxi Provinces. These regions collectively form the lower-middle reaches of the Yangtze River, and the late migration can thus be considered as an internal bioflow within one population. © 2014 Hu et al. Source


Hu G.,Nanjing Agricultural University | Lu F.,Nanjing Agricultural University | Lu M.-H.,China National Agro Tec Extension and Service Center | Liu W.-C.,China National Agro Tec Extension and Service Center | And 3 more authors.
PLoS ONE | Year: 2013

Migratory insects adapt to and exploit the atmospheric environment to complete their migration and maintain their population. However, little is known about the mechanism of insect migration under the influence of extreme weather conditions such as typhoons. A case study was conducted to investigate the effect of typhoon Khanun, which made landfall in the eastern China in Sept. 2005, on the migration of brown planthopper, Nilaparvata lugens (Stål). The migration pathways of N. lugens were reconstructed for the period under the influence of the typhoon by calculating trajectories using the MM5, a mesoscale numerical weather prediction model, and migration events were examined in 7 counties of the Yangtze River Delta region with ancillary information. The light trap catches and field observations indicated that the migration peak of N. lugens coincided with the period when the typhoon made landfall in this region. The trajectory analyses revealed that most emigrations from this region during this period were hampered or ended in short distances. The sources of the light-trap catches were mainly located the nearby regions of each station (i.e. mostly less than 100 km away, with a few exceeding 200 km but all less than 300 km). This disrupted emigration was very different from the usual N. lugens migration which would bring them to Hunan, Jiangxi, and southern Anhui from this region at this time of year. This study revealed that the return migration of N. lugens was suppressed by the typhoon Khanun, leading to populations remaining high in the Yangtze River Delta and exacerbating later outbreaks. © 2013 Hu et al. Source

Discover hidden collaborations