Beijing, China

The China Aerospace Science and Technology Corporation is the main contractor for the Chinese space program. It is state-owned and has a number of subordinate entities which design, develop and manufacture a range of spacecraft, launch vehicles, strategic and tactical missile systems, and ground equipment. It was officially established in July 1999 as part of a Chinese government reform drive, having previously been one part of the former China Aerospace Corporation. Various incarnations of the program date back to 1956.Along with space and defence manufacture, CASC also produces a number of high-end civilian products such as machinery, chemicals, communications equipment, transportation equipment, computers, medical care products and environmental protection equipment. CASC provides commercial launch services to the international market and is one of the world's most advanced organizations in the development and deployment of high energy propellant technology, strap-on boosters, and launching multiple satellites atop a single rocket. By the end of 2013, the corporation has registered capital of CN¥294.02 billion and employs 170,000 people. Wikipedia.


Time filter

Source Type

Patent
China Aerospace Science and Technology Corporation | Date: 2014-11-21

A carbonaceous substance powder gasification system and gasification method. The system comprises a carbonaceous substance reaction apparatus and a gas return apparatus used for raising the pressure of some of a raw syngas cooled and preliminarily purified downstream of the reaction apparatus, then blending with high-temperature raw syngas upstream of the reaction apparatus and reducing the temperature. The method comprises reacting in a gasification reaction apparatus the carbonaceous substance and a gasification agent to generate raw syngas and ash and slag, some of the high-temperature raw syngas moving downstream with fly ash and liquid slag, and some of the high-temperature syngas moving upstream with fly ash; the downstream part of the high-temperature raw syngas being cooled, preliminarily purified and deslagged, then pressurized, and the wet raw syngas being injected into the system and blended with the upstream high-temperature raw syngas; the remainder of the high-temperature syngas moving upstream with fly ash and blending and cooling with the low-temperature wet syngas injected by the preliminary cooler, and optionally being entered into the cooling reaction stage; the cooled or cooling-reacted raw syngas continuing upstream, passing through the upper cooling stage and cooling again and ash being removed to obtain the raw syngas.


Patent
China Aerospace Science, Technology Corporation and Teda International Cardiovascular Hospital | Date: 2016-08-10

The invention discloses a blood pump control system comprising: a local processing terminal and a remote processing terminal; wherein the local processing terminal is configured to transmit to the remote processing terminal, collected current state parameters of the blood pump and heart activity indexes, and to drive and control the blood pump according to blood pump adjusting parameters received from the remote processing terminal; and wherein the remote processing terminal is configured to obtain current blood pump adjusting parameters according to the current state parameters, and the heart activity indexes received from the local processing terminal, and set adjusting conditions; and to transmit the blood pump adjusting parameters back to the local processing terminal. The problem that closed-loop adjustment of blood pump operating parameters directed to real-time physiological conditions of the carrier is impossible in the prior art is solved, such that the blood pump is more suitable for the use of the carrier, and the heart chamber assisting effect and reliability and safety of the blood pump are improved. The invention also provides a blood pump control method and a blood pump system comprising the control system.


Patent
China Aerospace Science, Technology Corporation and Teda International Cardiovascular Hospital | Date: 2013-11-27

A blood pump control system includes a local processing terminal and a remote processing terminal. The local processing terminal is configured to transmit to the remote processing terminal, collected current state parameters of the blood pump and heart activity indexes, and to drive and control the blood pump according to blood pump adjusting parameters received from the remote processing terminal. The remote processing terminal is configured to obtain current blood pump adjusting parameters according to the current state parameters, and the heart activity indexes received from the local processing terminal, and set adjusting conditions; and to transmit the blood pump adjusting parameters back to the local processing terminal.


Patent
China Aerospace Science and Technology Corporation | Date: 2012-10-31

The present invention provide a fuel distribution device (9) for a burner, comprising an inlet end (9a), an outlet end (9b) and a distribution channel (9c) extending therebetween as well as n fuel feeding tubes (5) extending from the inlet end (9a) into the distribution channel (9c), characterized in that, the outlet end (9b) is provided with n groups of distribution opening, each of the groups includes m distribution openings distributed evenly along a circumference direction of the outlet end (9b), and in that the m feeding branch pipes (8) extending from each of the fuel feeding tubes (5) are communicated with the m distribution openings of each group respectively, wherein m, n are positive integers greater than or equal to 2. This design of the fuel distribution device improves the redundancy of the burner so as to ensure the even distribution of the fuel such as powdered coals at the outlet end of the fuel distribution device upon failure of one or several fuel feeding tubes. Further, the present invention also provides a burner utilizing this fuel distribution device.


Patent
China Aerospace Science and Technology Corporation | Date: 2012-11-07

The present invention is directed to a flame detection device comprising a flame signal receiver (1), a flame signal passage (11) and a flame signal transmitting mechanism, characterized in that, the flame signal passage (11) passes trough a furnace shell(12) into inner of the furnace and comprises an outside-furnace passage portion (11a) and an inside-furnace passage portion (11b); wherein a pressure-resistant optical mechanism (10) is arranged at the outermost end of the outside-furnace passage portion, said pressure-resistant optical mechanism hermetically and transparently separate the flame signal receiver from the flame signal passage; and wherein the inside-furnace passage portion (11b) is provided with a cooling mechanism (19). Such a flame detection device is to be arranged on a furnace shell, and it could not only conduct a flame detection on the furnace under high temperature and high pressure, but also has a selection of the proper flame signal receivers installed for different stages of operation as desired.


Patent
China Aerospace Science and Technology Corporation | Date: 2016-10-05

A carbonaceous substance powder gasification system and gasification method. The system comprises a carbonaceous substance reaction apparatus and a gas return apparatus used for raising the pressure of some of a raw syngas cooled and preliminarily purified downstream of the reaction apparatus, then blending with high-temperature raw syngas upstream of the reaction apparatus and reducing the temperature. The method comprises reacting in a gasification reaction apparatus the carbonaceous substance and a gasification agent to generate raw syngas and ash and slag, some of the high-temperature raw syngas moving downstream with fly ash and liquid slag, and some of the high-temperature syngas moving upstream with fly ash; the downstream part of the high-temperature raw syngas being cooled, preliminarily purified and deslagged, then pressurized, and the wet raw syngas being injected into the system and blended with the upstream high-temperature raw syngas; the remainder of the high-temperature syngas moving upstream with fly ash and blending and cooling with the low-temperature wet syngas injected by the preliminary cooler, and optionally being entered into the cooling reaction stage; the cooled or cooling-reacted raw syngas continuing upstream, passing through the upper cooling stage and cooling again and ash being removed to obtain the raw syngas substance.


Patent
China Aerospace Science and Technology Corporation | Date: 2011-05-25

The present invention discloses a method and apparatus for receiving signals, which comprises the followings: receive signals on at least one receiving branch, which comprises at least two reception units, including one data reception unit and one pilot reception unit at least. Said signal refers to a codeword in a transmission codebook; calculate metric value of each codeword in said transmission codebook according to said received signal; obtain the codeword with maximal metric value among all said codewords and the metric value corresponding to this codeword; if this value exceeds threshold value, Determining the codeword corresponding to said maximal metric value; if this value is less than the threshold value, Determining discontinuously-sent DTX. In the present invention, perform joint demodulation of data symbol and pilot symbol to make the demodulation results more reliable; meanwhile; judge whether it is discontinuous transmission based on joint demodulation of data symbol and pilot symbol.


Patent
China Aerospace Science and Technology Corporation | Date: 2012-10-31

A gasification apparatus for solid fuel, especially an apparatus for producing syngas by pressurized gasification of coal powder, including a gasification chamber (II) and a syngas cooling chamber (III). The inner wall of the gasification chamber is a water-cooling wall (4). The inner side of the water-cooled wall is evenly coated with a layer of fire-resistant material (16). There is an annular cavity between the water-cooling wall of the gasification chamber and the furnace body. A syngas cooling device, a vertical pipe (22), a gas distribution device (24), a defoaming device, and a dewatering and deashing device (21) are provided in the syngas cooling chamber. Said syngas cooling device is connected with a cone-shaped disk at the bottom of the gasification chamber. The vertical pipe (22) is connected with the syngas cooling device. The lower portion of the vertical pipe (22) is connected with the trumpet-shaped gas distribution device (24) via a smooth transition. A baffle device is arranged above the gas distribution device (24), above which a defoaming device is arranged. The apparatus has a simple structure and is easy to operate. A high temperature gasification method for dry powder of carbonaceous material comprises spraying the combustible material and oxygen into the furnace and followed by ignition.


Patent
China Aerospace Science and Technology Corporation | Date: 2014-11-21

A carbonaceous substance dry powder gasification device and method, the device comprising from bottom to top a lower cooling and purification section (1), a gasification reaction section (2), a cooling reaction section (3) and an upper cooling and purification section (4); an initial cooling device is disposed at the connection between the cooling reaction section and the gasification reaction section; and a plurality of nozzles are circumferentially arranged in the gasification reaction section. The method comprises: a gasification reaction is conducted between a carbonaceous substance and an oxygenated gasifying agent to generate crude synthesis gas and ash; part of the crude synthesis gas and most of the ash go downstream for cooling and gasification, and the cooled and ash removed crude synthesis gas is transferred to subsequent processes, and the quenched ash is discharged through an ash outlet; the remaining crude synthesis gas and fly ash go upstream to mix with a cooling substance for cooling, and then are transferred to the cooling reaction section for reacting with the incompletely reacted carbon and added gasification agent; the crude synthesis gas and the fly ash are cooled and purified to remove the fly ash, and the clean low-temperature crude synthesis gas is transferred to subsequent processes. The method avoids ash blocking at an ash outlet in an upstream air-exhaust method, and also avoids overheating at the top in a downstream air-exhaust method, thus improving the carbon conversion rate.


Patent
China Aerospace Science and Technology Corporation | Date: 2016-10-05

A carbonaceous substance dry powder gasification device and method, the device comprising from bottom to top a lower cooling and purification section (1), a gasification reaction section (2), a cooling reaction section (3) and an upper cooling and purification section (4); an initial cooling device is disposed at the connection between the cooling reaction section and the gasification reaction section; and a plurality of nozzles are circumferentially arranged in the gasification reaction section. The method comprises: a gasification reaction is conducted between a carbonaceous substance and an oxygenated gasifying agent to generate crude synthesis gas and ash; part of the crude synthesis gas and most of the ash go downstream for cooling and gasification, and the cooled and ash removed crude synthesis gas is transferred to subsequent processes, and the quenched ash is discharged through an ash outlet; the remaining crude synthesis gas and fly ash go upstream to mix with a cooling substance for cooling, and then are transferred to the cooling reaction section for reacting with the incompletely reacted carbon and added gasification agent; the crude synthesis gas and the fly ash are cooled and purified to remove the fly ash, and the clean low-temperature crude synthesis gas is transferred to subsequent processes. The method avoids ash blocking at an ash outlet in an upstream air-exhaust method, and also avoids overheating at the top in a downstream air-exhaust method, thus improving the carbon conversion rate.

Loading China Aerospace Science and Technology Corporation collaborators
Loading China Aerospace Science and Technology Corporation collaborators