The Childrens Hospital of Eastern Ontario CHEO

Ottawa, Canada

The Childrens Hospital of Eastern Ontario CHEO

Ottawa, Canada
SEARCH FILTERS
Time filter
Source Type

Kilty S.J.,The Ottawa Hospital TOH | Duval M.,The Ottawa Hospital TOH | Chan F.T.,The Childrens Hospital of Eastern Ontario CHEO | Ferris W.,The Childrens Hospital of Eastern Ontario CHEO | Slinger R.,The Childrens Hospital of Eastern Ontario CHEO
International Forum of Allergy and Rhinology | Year: 2011

Background: Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) biofilms are associated with poor chronic rhinosinusitis (CRS) disease control following surgery. Manuka honey (MH) has been shown to be both an effective in vitro treatment agent for SA and PA biofilms and nontoxic to sinonasal respiratory mucosa. Methylglyoxal (MGO) has been reported to be the major antibacterial agent in MH. The effect of this agent against SA and PA biofilms has yet to be reported. Our objective was to determine the in vitro effect of MGO against biofilms of SA and PA, via in vitro testing of MGO against bacterial biofilms. Methods: An established biofilm model was used to determine the effective concentration (EC) of MGO against 10 isolates of methicillin-resistant SA (MRSA) and PA. The EC of MGO was also determined against planktonic (free-swimming) MRSA and PA. Results: For MRSA, the EC against planktonic organisms was a concentration of 0.08 mg/mL to 0.3 mg/mL whereas against the biofilm MRSA isolates, the EC ranged from 0.5 mg/mL to 3.6 mg/mL. For PA, the EC against planktonic organisms was a concentration of 0.15 mg/mL to 1.2 mg/mL for planktonic organisms whereas against the biofilm PA isolates, the EC ranged from 1.8 mg/mL to 7.3 mg/mL. Conclusion: MGO, a component of MH, is an effective antimicrobial agent against both planktonic and biofilm MRSA and PA organisms in vitro. © 2011 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.


Thromboembolism (TE) and infection are two common complications of central venous line (CVL). Thrombotic CVL-dysfunction is a common, yet less studied, complication of CVL. Two retrospective studies have reported significant association of CVL-dysfunction and TE. Recent studies indicate association of CVL-related small clot with infection. Infection is the most common cause of non-cancer related mortality in children with cancer. We and others have shown reduced overall survival (OS) in children with cancer and CVL-dysfunction compared to those without CVL-dysfunction. Despite these observations, to date there are no prospective studies to evaluate the clinical significance of CVL-dysfunction and its impact on the development of TE, infection, or outcome of children with cancer.This is a prospective, analytical cohort study conducted at five tertiary care pediatric oncology centers in Ontario. Children ( 18years of age) with non-central nervous system cancers and CVL will be eligible for the study. Primary outcome measure is symptomatic TE and secondary outcomes are infection, recurrence of cancer and death due to any cause. Data will be analyzed using regression analyses.The overall objective is to delineate the relationship between CVL-dysfunction, infection and TE. The primary aim is to evaluate the role of CVL-dysfunction as a predictor of symptomatic TE in children with cancer. We hypothesize that children with CVL-dysfunction have activation of the coagulation system resulting in an increased risk of symptomatic TE. The secondary aims are to study the impact of CVL-dysfunction on the rate of infection and the survival [OS and event free survival (EFS)] of children with cancer. We postulate that patients with CVL-dysfunction have an occult CVL-related clot which acts as a microbial focus with resultant increased risk of infection. Further, CVL-dysfunction by itself or in combination with associated complications may cause therapy delays resulting in adverse outcome.This study will help to identify children at high risk for TE and infection. Based on the study results, we will design randomized controlled trials of prophylactic anticoagulant therapy to reduce the incidence of TE and infection. This in turn will help to improve the outcome in children with cancer.

Loading The Childrens Hospital of Eastern Ontario CHEO collaborators
Loading The Childrens Hospital of Eastern Ontario CHEO collaborators