Entity

Time filter

Source Type


Martinelli D.,Children Research Hospital Bambino Gesu | Diodato D.,Children Research Hospital Bambino Gesu | Ponzi E.,Children Research Hospital Bambino Gesu | Ponzi E.,Catholic University Policlinico Gemelli | And 5 more authors.
Orphanet Journal of Rare Diseases | Year: 2015

Background: Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare autosomal recessive disorder of the urea cycle. HHH has a panethnic distribution, with a major prevalence in Canada, Italy and Japan. Acute clinical signs include intermittent episodes of vomiting, confusion or coma and hepatitis-like attacks. Alternatively, patients show a chronic course with aversion for protein rich foods, developmental delay/intellectual disability, myoclonic seizures, ataxia and pyramidal dysfunction. HHH syndrome is caused by impaired ornithine transport across the inner mitochondrial membrane due to mutations in SLC25A15 gene, which encodes for the mitochondrial ornithine carrier ORC1. The diagnosis relies on clinical signs and the peculiar metabolic triad of hyperammonemia, hyperornithinemia, and urinary excretion of homocitrulline. HHH syndrome enters in the differential diagnosis with other inherited or acquired conditions presenting with hyperammonemia. Methods: A systematic review of publications reporting patients with HHH syndrome was performed. Results: We retrospectively evaluated the clinical, biochemical and genetic profile of 111 HHH syndrome patients, 109 reported in 61 published articles, and two unpublished cases. Lethargy and coma are frequent at disease onset, whereas pyramidal dysfunction and cognitive/behavioural abnormalities represent the most common clinical features in late-onset cases or during the disease course. Two common mutations, F188del and R179* account respectively for about 30% and 15% of patients with the HHH syndrome. Interestingly, the majority of mutations are located in residues that have side chains protruding into the internal pore of ORC1, suggesting their possible interference with substrate translocation. Acute and chronic management consists in the control of hyperammonemia with protein-restricted diet supplemented with citrulline/arginine and ammonia scavengers. Prognosis of HHH syndrome is variable, ranging from a severe course with disabling manifestations to milder variants compatible with an almost normal life. Conclusions: This paper provides detailed information on the clinical, metabolic and genetic profiles of all HHH syndrome patients published to date. The clinical phenotype is extremely variable and its severity does not correlate with the genotype or with recorded ammonium/ornithine plasma levels. Early intervention allows almost normal life span but the prognosis is variable, suggesting the need for a better understanding of the still unsolved pathophysiology of the disease. © 2015 Martinelli et al.; licensee BioMed Central. Source


Martinelli D.,Children Research Hospital Bambino Gesu | Diodato D.,Neuromuscular and Neurodegenerative Diseases Unit | Ponzi E.,Children Research Hospital Bambino Gesu | Ponzi E.,Catholic University Policlinico Gemelli | And 5 more authors.
Orphanet Journal of Rare Diseases | Year: 2015

Background: Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare autosomal recessive disorder of the urea cycle. HHH has a panethnic distribution, with a major prevalence in Canada, Italy and Japan. Acute clinical signs include intermittent episodes of vomiting, confusion or coma and hepatitis-like attacks. Alternatively, patients show a chronic course with aversion for protein rich foods, developmental delay/intellectual disability, myoclonic seizures, ataxia and pyramidal dysfunction. HHH syndrome is caused by impaired ornithine transport across the inner mitochondrial membrane due to mutations in SLC25A15 gene, which encodes for the mitochondrial ornithine carrier ORC1. The diagnosis relies on clinical signs and the peculiar metabolic triad of hyperammonemia, hyperornithinemia, and urinary excretion of homocitrulline. HHH syndrome enters in the differential diagnosis with other inherited or acquired conditions presenting with hyperammonemia. Methods: A systematic review of publications reporting patients with HHH syndrome was performed. Results: We retrospectively evaluated the clinical, biochemical and genetic profile of 111 HHH syndrome patients, 109 reported in 61 published articles, and two unpublished cases. Lethargy and coma are frequent at disease onset, whereas pyramidal dysfunction and cognitive/behavioural abnormalities represent the most common clinical features in late-onset cases or during the disease course. Two common mutations, F188del and R179∗ account respectively for about 30% and 15% of patients with the HHH syndrome. Interestingly, the majority of mutations are located in residues that have side chains protruding into the internal pore of ORC1, suggesting their possible interference with substrate translocation. Acute and chronic management consists in the control of hyperammonemia with protein-restricted diet supplemented with citrulline/arginine and ammonia scavengers. Prognosis of HHH syndrome is variable, ranging from a severe course with disabling manifestations to milder variants compatible with an almost normal life. Conclusions: This paper provides detailed information on the clinical, metabolic and genetic profiles of all HHH syndrome patients published to date. The clinical phenotype is extremely variable and its severity does not correlate with the genotype or with recorded ammonium/ornithine plasma levels. Early intervention allows almost normal life span but the prognosis is variable, suggesting the need for a better understanding of the still unsolved pathophysiology of the disease. © 2015 Martinelli et al. Source


Ng Y.S.,Northumbria University | Alston C.L.,Northumbria University | Diodato D.,Neuromuscular and Neurodegenerative Disease Unit | Morris A.A.,St. Marys University | And 30 more authors.
Journal of Medical Genetics | Year: 2016

Background Mutations in the RMND1 (Required for Meiotic Nuclear Division protein 1) gene have recently been linked to infantile onset mitochondrial disease characterised by multiple mitochondrial respiratory chain defects. Methods We summarised the clinical, biochemical and molecular genetic investigation of an international cohort of affected individuals with RMND1 mutations. In addition, we reviewed all the previously published cases to determine the genotype-phenotype correlates and performed survival analysis to identify prognostic factors. Results We identified 14 new cases from 11 pedigrees that harbour recessive RMND1 mutations, including 6 novel variants: c.533C>A, p.(Thr178Lys); c.565C>T, p.(Gln189*); c.631G>A, p.(Val211Met); c.1303C>T, p.(Leu435Phe); c.830+1G>A and c.1317+1G>T. Together with all previously published cases (n=32), we show that congenital sensorineural deafness, hypotonia, developmental delay and lactic acidaemia are common clinical manifestations with disease onset under 2 years. Renal involvement is more prevalent than seizures (66% vs 44%). In addition, median survival time was longer in patients with renal involvement compared with those without renal disease (6 years vs 8 months, p=0.009). The neurological phenotype also appears milder in patients with renal involvement. Conclusions The clinical phenotypes and prognosis associated with RMND1 mutations are more heterogeneous than that were initially described. Regular monitoring of kidney function is imperative in the clinical practice in light of nephropathy being present in over 60% of cases. Furthermore, renal replacement therapy should be considered particularly in those patients with mild neurological manifestation as shown in our study that four recipients of kidney transplant demonstrate good clinical outcome to date. © 2016 by the BMJ Publishing Group Ltd. Source

Discover hidden collaborations