Children Hospital

Beijing, China

Children Hospital

Beijing, China
SEARCH FILTERS
Time filter
Source Type

News Article | March 12, 2017
Site: www.techtimes.com

Erika and Eva Sandoval the former conjoined Sacramento twins have been discharged from Lucile Packard Children's Hospital in Stanford on March 10 and been transported to UC Davis Children's Hospital for inpatient rehabilitation. With this move, the former conjoined twins are one step closer to go back to their family home in Antelope. The 2-year old twins were admitted to the hospital to undergo the separation surgery. Erika and Eva were successfully separated from each other on Dec. 6, 2016, after undergoing a 17-hour long surgery with no major complications. The twins were kept back in Packard for three months so that the doctors could keep an eye on their recovery, wounds and chances of infection. Eva and Erika were joined together from the chest down and had a common liver, bladder, some parts of the digestive system. The twins also shared between themselves a third leg. The twins were born to Aida Arturo Sandoval who had spent the last two and a half years in the care of the children. Apart from their physical uniqueness, Erika and Eva are happy, carefree and normal toddlers. Before the doctors started the surgery, they had estimated that there was 30 percent chance of one of the twins succumbing to death during the operation. The surgery separated them successfully but gave each girl only one leg as the third leg was used for Erika's constructive surgery. Dr. Gary Hartman who lead the long and risky separation surgery said that the twins were doing pretty well and he was very proud of what his team has achieved so far. "They're doing really well, and they're ready to go. It's a great thing for everyone on our team to see," said Dr. Hartman. After the surgery was over, Erika healed faster than her sister Eva which lead to her discharge from the hospital on Feb. 13 without her sibling by her side. Eva was kept under the scanner for some more days as doctors wanted to monitor her separation site wound. On a positive note, Eva's wound is healing well and it seems that she won't need a skin draft. However, the hospital is trying to help them adapt into their new body and improve the functional ability as both the sisters have only one leg. "Improving their functional mobility will be really important in getting them to continue adapting to their new bodies. The specialized equipment that an inpatient rehab like Davis offers will really help them with this," said Kelly Andrasik, an occupational therapist at Packard's Children Hospital. © 2017 Tech Times, All rights reserved. Do not reproduce without permission.


News Article | April 19, 2017
Site: www.eurekalert.org

The Clinical Research Forum, a national organization of senior researchers and thought leaders from the nation's leading academic health centers, selected two studies headed by University of Chicago researchers as among the three best clinical research papers published in 2016. These awards honor outstanding clinical research and identify major advances resulting from the nation's investment in improving the health of its citizens. Ten award winners were chosen for their innovation and creativity, advancement of science in a specific area, contribution to understanding human disease or physiology, and potential impact upon the diagnosis, prevention and treatment of disease. The Herbert Pardes Clinical Research Excellence Award is the Clinical Research Forum's highest honor. It is awarded to the research study that best exemplifies the spirit of the awards in that it shows a team science approach with a high degree of innovation and creativity, which advances science and has an impact upon human disease. The award comes with a cash prize of $5,000. This year, the Pardes Award went to a team headed by geneticist Carole Ober, PhD, professor and chairman of human genetics at the University of Chicago, and immunologist Anne Sperling, PhD, associate professor of medicine at the University of Chicago. Their study, "Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children," was published Aug. 4, 2016, in the New England Journal of Medicine. The interdisciplinary team of researchers showed that substances in the house dust from Amish, but not Hutterite, homes were able to engage and shape the innate immune system (the body's front-line response to most microbes) in young Amish, but not Hutterite, children in ways that appear to suppress pathologic responses leading to allergic asthma. The Distinguished Clinical Research Achievement Awards are presented to the top two studies that demonstrate creativity, innovation, or a novel approach that demonstrates an immediate impact on the health and well-being of patients. These awards come with a cash prize of $3,500. One of those awards goes to a team led by pulmonologist John P. Kress, MD, professor of medicine at the University of Chicago, and Bhakti Patel, MD, clinical instructor of medicine at the University. Their study on the "Effect of Noninvasive Ventilation Delivered by Helmet vs Face Mask on the Rate of Endotracheal Intubation in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial," was published May 15, 2016, in JAMA. It showed that using a transparent, air-tight helmet instead of a face mask helps critically ill patients breathe better and can prevent them from needing a ventilator. Patients with helmet ventilation had better survival and spent less time in the intensive care unit. The helmet "confers several advantages over the face mask," the authors note. It is less likely to leak. This enables the care team to increase air pressure into the helmet, which helps keep the airway and lungs open and improves oxygen levels. It is also more comfortable, easier to tolerate because it doesn't touch the face, and patients can see through it well enough to watch television, talk or read. Award recipients were recognized earlier this evening at the Clinical Research Forum's sixth annual awards ceremony on April 18 at the National Press Club in Washington, D.C. Members of the research teams will visit congressional representatives on Capitol Hill on Wednesday, April 19, to brief officials on their findings and the critical and necessary role of federal funding for clinical research. These studies reflect major work being conducted at nearly 60 research institutions and hospitals across the United States, as well as at partner institutions from around the world, according to the Clinical Research Forum. "The 2017 awardees represent the enormous potential that properly funded research can have on patients and the public," said Harry P. Selker, MD, MSPH, Chairman of the CR Forum Board of Directors. "It is our hope that the significance of these projects and their outcomes can help educate the public, as well as elected officials, on the important impact of clinical research on human health." Recognizing the need to celebrate our nation's clinical research accomplishments that involve both innovation and impact on human disease, the Clinical Research Forum conducts an annual competition to determine the ten outstanding research accomplishments in the United States. These major research advances represent a portion of the annual return on the nation's investment in the health and future welfare of its citizens. The mission of the Clinical Research Forum is to provide leadership to the national and clinical translational research enterprise and promote understanding and support for clinical research and its impact on health and healthcare. For more information, visit http://www. . The National Institutes of Health, the St. Vincent Foundation and the American Academy of Allergy, Asthma & Immunology Foundation supported the asthma study. Additional authors were Michelle Stein, Cara Hrusch, Catherine Igartua and Jack Gilbert from the University of Chicago; Donata Vercelli, Justyna Gozdz, Vadim Pivniouk, Julie Ledford, Mauricius Marques dos Santos, Julia Neilson, Sean Murray, Raina Maier and Fernando Martinez from the University of Arizona; Erika von Mutius of the Dr. von Hauner Children Hospital in Munich, Germany; Nervana Metwali and Peter Thorne from the University of Iowa; and Mark Holbreich, an allergist-immunologist in Indianapolis, Indiana. Funding for the helmet study was supplied by the National Heart Lung and Blood Institute. The helmets were purchased using funds from an unrestricted grant from the Daniel J. Edelman family. Additional authors were Krysta Wolfe, Anne Pohlman and Jesse Hall, all from the University of Chicago.


Hazir T.,Children Hospital | Uddin S.,University of Sydney | Dibley M.J.,University of Sydney | Thow A.M.,University of Sydney
BMC Public Health | Year: 2017

Background: Appropriate infant and young child feeding (IYCF) practices have been identified as important for appropriate child growth and development. (Ministry of Planning and Development, Ministry of National Health Services, Regulations and Coordination (2012)) Children in Pakistan still experience high rates of malnutrition, indicating a likely need for stronger IYCF policy. The purpose of this study was to identify major stakeholders who shape the IYCF policy environment and analyze which policies protect, promote and support IYCF practices, either directly or indirectly. Methods: This study was conducted at the federal level, and in the provinces of Sindh and Punjab. We identified policies relevant to IYCF using a matrix developed by the South Asian Infant Feeding Research Network (SAIFRN), designed to capture policies at a range of levels (strategic policy documents through to implementation guidelines) in sectors relevant to IYCF. We analyzed the content using predetermined themes focused on support for mothers, and used narrative synthesis to present our findings. For the stakeholder analysis, we conducted four Net-Map activities with 49 interviewees using the Net-Map methodology. We analyzed the quantitative data using Organizational Risk Analyzer ORA and used the qualitative data to elucidate further information regarding relationships between stakeholders. Results: We identified 19 policy documents for analysis. Eleven of these were nutrition and/or IYCF focused and eight were broader policies with IYCF as a component. The majority lacked detail relevant to implementation, particularly in terms of: ownership of the policies by a specific government body; sustainability of programs/strategies (most are donor funded), multi-sectoral collaboration; and effective advocacy and behavior change communication. Data collected through four Net-Map activities showed that after devolution of health ministry, provincial health departments were the key actors in the government whereas UNICEF and WHO were the key donors who were also highly influential and supportive of the objective. Conclusion: This analysis identified opportunities to strengthen IYCF policy in Pakistan through increased clarity on roles and responsibilities, improved multisectoral collaboration, and strong and consistent training guidelines and schedules for community health workers. The current policy environment presents opportunities, despite limitations. Our Net-Map analysis indicated several key government and international stakeholders, who differed across Federal and Provincial study sites. The detailed information regarding stakeholder influence can be used to strengthen advocacy. © 2017 The Author(s).


Wilhelm-Bals A.,Children Hospital | Parvex P.,Children Hospital | Magdelaine C.,University of Limoges | Girardin E.,Children Hospital
Pediatrics | Year: 2012

Neonatal primary hyperparathyroidism (NPHT) is associated with an inactivating homozygous mutation of the calcium sensing receptor (CaSR). The CaSR is expressed most abundantly in the parathyroid glands and the kidney and regulates calcium homeostasis through its ability to modulate parathormone secretion and renal calcium reabsorption. NPHT leads to life threatening hypercalcemia, nephrocalcinosis, bone demineralization, and neurologic disabilities. Surgery is the treatment of choice. While waiting for surgery, bisphosphonates offer a good alternative to deal with hypercalcemia. Cinacalcet is a class II calcimimetic that increases CaSR affinity for calcium, leading to parathormone suppression and increased calcium renal excretion. At present, there is little evidence as to whether cinacalcet could improve the function of mutant CaSR in NPHT. We report a case of NPHT, treated successfully with bisphosphonates and cinacalcet after surgery failure. To our knowledge, it is the first time cinacalcet has been used for NPHT. Copyright © 2012 by the American Academy of Pediatrics.


News Article | December 1, 2016
Site: www.eurekalert.org

DURHAM, N.C. -- Sensory problems are common to autism spectrum disorders. Some individuals with autism may injure themselves repetitively -- for example, pulling their hair or banging their heads -- because they're less sensitive to pain than other people. New research points to a potential mechanism underlying pain insensitivity in autism. The study, conducted by two teams at Duke University and appearing online Dec. 1 in the journal Neuron, is the first to connect autism to one of the most well-studied pain molecules, called TRPV1 (transient receptor potential ion channel subtype V1), which is a receptor for the main spicy component of chili peppers. "Not enough research has been done on the mechanisms driving sensory problems in autism, but it's important because sensory processing probably affects to some degree how the brain develops," said co-author Yong-hui Jiang, M.D., Ph.D., associate professor of pediatrics and neurobiology at Duke. Jiang collaborated with Ru-Rong Ji, Ph.D., professor of anesthesiology and neurobiology and chief of pain research in Duke University School of Medicine's Department of Anesthesiology. In a study published earlier this year, Jiang and other collaborators at Duke described a mouse model of autism in which they deleted a prominent autism gene called SHANK3, which is mutated in 1 percent of people with the disorder. These mice show several features of autism, including social deficits and excessive self-grooming. That study did not examine pain. But about 70 percent of individuals with autism or a related disorder called Phelan-McDermid syndrome who have mutations in SHANK3 are known to have sensory processing problems, according to Jiang, who treats children with autism at Duke's Children Hospital & Health Center. In the new study, Ji's group put SHANK3-deficient mice through a battery of sensory tests, finding that the animals had lower sensitivity than normal mice to heat and heat-related pain -- akin to the soreness a person feels after a sunburn. It turns out that the SHANK3 protein is normally present not only in the brain, but also in a cluster of pain-sensing neurons called the dorsal root ganglion in mice. The group also found SHANK3 in the same types of cells from human donors who did not have autism. "This was a big surprise that SHANK3 is expressed in the peripheral nervous system, but before this study, no one had ever looked for it outside of the brain," Ji said. The scientists found that TRPV1 and SHANK3 are actually present together in sensory neurons of the dorsal root ganglion, and that they interact. In the mice missing SHANK3, TRPV1 never makes it to the cell surface, where it normally does its job. Missing even half of normal level of SHANK3 drastically lowers TRPV1's ability to transmit pain signals, suggesting that SHANK3 is a crucial molecule for pain sensation. SHANK3 is better known for its role in the brain. It is found in the tiny clefts called synapses where signals are passed from one neuron to the next. Until now, it was believed to be present only in the receiving end of the synapse, called the postsynaptic terminal, where it acts as a scaffold to secure specific receptors that receive chemical messages. The new study also shows that SHANK3 is expressed on the sending sides of the synapse, called presynaptic terminals. The scientists hope to understand next what the protein might be doing there. "That changes our understanding of how these two components (of the synapse) work together to contribute to autism-related behavior and will change how we develop effective treatments," Jiang said. TRPV1 blockers are already the focus of intense research and development, but these compounds come with side effects. The new study suggests a more specific way to block TRPV1 -- through its interaction with SHANK3 -- in order to avoid these side effects, Ji said. Ji and Jiang are both members of the Duke Institute for Brain Sciences. The study also includes three co-first authors: Qingjian Han from Ji's group who discovered SHANK3 in sensory neurons and pain defects in SHANK3 mutant mice; Yong Ho Kim, an electrophysiologist in Ji's group who found diminished TRPV1 function in SHANK3 mutant mice; and Xiaoming Wang from Jiang's lab who generated SHANK3 mutant mice. This research was supported by the National Institutes of Health (R01 NS87988, R01 DE17794, R01 DE22743, R01 MH098114, R21 HD077197, and R21 MH1043136) and the Phelan-McDermid Syndrome Foundation. CITATION: "SHANK3 Deficiency Impairs Heat Hyperalgesia and TRPV1 Signaling in Primary Sensory Neurons," Qingjian Han, Yong Ho Kim, Xiaoming Wang, Di Liu, Zhi-Jun Zhang, Alexandra L. Bey, Mark Lay, Wonseok Chang, Temugin Berta, Yan Zhang, Yong-Hui Jiang, and Ru-Rong Ji. Neuron, Dec. 21, 2016. DOI: 10.1016/j.neuron.2016.11.007


News Article | January 26, 2016
Site: www.biosciencetechnology.com

In patients suffering from Type 1 diabetes, the immune system attacks the pancreas, eventually leaving patients without the ability to naturally control blood sugar. These patients must carefully monitor the amount of sugar in their blood, measuring it several times a day and then injecting themselves with insulin to keep their blood sugar levels within a healthy range. However, precise control of blood sugar is difficult to achieve, and patients face a range of long-term medical problems as a result. A better diabetes treatment, many researchers believe, would be to replace patients’ destroyed pancreatic islet cells with healthy cells that could take over glucose monitoring and insulin release. This approach has been used in hundreds of patients, but it has one major drawback — the patients’ immune systems attack the transplanted cells, requiring patients to take immunosuppressant drugs for the rest of their lives. Now, a new advance from MIT, Boston Children’s Hospital, and several other institutions may offer a way to fulfill the promise of islet cell transplantation. The researchers have designed a material that can be used to encapsulate human islet cells before transplanting them. In tests on mice, they showed that these encapsulated human cells could cure diabetes for up to six months, without provoking an immune response. Although more studies are needed, this approach “has the potential to provide diabetics with a new pancreas that is protected from the immune system, which would allow them to control their blood sugar without taking drugs. That’s the dream,” says Daniel Anderson, the Samuel A. Goldblith Associate Professor in MIT’s Department of Chemical Engineering, a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science (IMES), and a research fellow in the Department of Anesthesiology at Boston Children’s Hospital. Anderson is the senior author of two studies describing this method in the Jan. 25 issues of Nature Medicine and Nature Biotechnology. Researchers from Harvard University, the University of Illinois at Chicago, the Joslin Diabetes Center, and the University of Massachusetts Medical School also contributed to the research. Since the 1980s, a standard treatment for diabetic patients has been injections of insulin produced by genetically engineered bacteria. While effective, this type of treatment requires great effort by the patient and can generate large swings in blood sugar levels. At the urging of JDRF director Julia Greenstein, Anderson, Langer, and colleagues set out several years ago to come up with a way to make encapsulated islet cell transplantation a viable therapeutic approach. They began by exploring chemical derivatives of alginate, a material originally isolated from brown algae. Alginate gels can be made to encapsulate cells without harming them, and also allow molecules such as sugar and proteins to move through, making it possible for cells inside to sense and respond to biological signals. However, previous research has shown that when alginate capsules are implanted in primates and humans, scar tissue eventually builds up around the capsules, making the devices ineffective. The MIT/Children’s Hospital team decided to try to modify alginate to make it less likely to provoke this kind of immune response. “We decided to take an approach where you cast a very wide net and see what you can catch,” said Arturo Vegas, a former MIT and Boston Children’s Hospital postdoc who is now an assistant professor at Boston University. Vegas is the first author of the Nature Biotechnology paper and co-first author of the Nature Medicine paper. “We made all these derivatives of alginate by attaching different small molecules to the polymer chain, in hopes that these small molecule modifications would somehow give it the ability to prevent recognition by the immune system.” After creating a library of nearly 800 alginate derivatives, the researchers performed several rounds of tests in mice and nonhuman primates. One of the best of those, known as triazole-thiomorpholine dioxide (TMTD), they decided to study further in tests of diabetic mice. They chose a strain of mice with a strong immune system and implanted human islet cells encapsulated in TMTD into a region of the abdominal cavity known as the intraperitoneal space. The pancreatic islet cells used in this study were generated from human stem cells using a technique recently developed by Douglas Melton, a professor at Harvard University who is an author of the Nature Medicine paper. Following implantation, the cells immediately began producing insulin in response to blood sugar levels and were able to keep blood sugar under control for the length of the study, 174 days. “The really exciting part of this was being able to show, in an immune-competent mouse, that when encapsulated these cells do survive for a long period of time, at least six months,” said Omid Veiseh, a senior postdoc at the Koch Institute and Boston Children’s hospital, co-first author of the Nature Medicine paper, and an author of the Nature Biotechnology paper. “The cells can sense glucose and secrete insulin in a controlled manner, alleviating the mice’s need for injected insulin.” The researchers also found that 1.5-millimeter diameter capsules made from their best materials (but not carrying islet cells) could be implanted into the intraperitoneal space of nonhuman primates for at least six months without scar tissue building up. “The combined results from these two papers suggests that these capsules have real potential to protect transplanted cells in human patients,” said Robert Langer, the David H. Koch Institute Professor at MIT, a senior research associate at Boston’s Children Hospital, and co-author on both papers.  “We are so pleased to see this research in cell transplantation reach these important milestones.” Cherie Stabler, an associate professor of biomedical engineering at the University of Florida, said this approach is impressive because it tackles all aspects of the problem of islet cell delivery, including finding a source of cells, preventing an immune response, and developing a suitable delivery material. “It’s such a complex, multipronged problem that it’s important to get people from different disciplines to address it,” said Stabler, who was not involved in the research. “This is a great first step towards a clinically relevant, cell-based therapy for Type I diabetes.” The researchers now plan to further test their new materials in nonhuman primates, with the goal of eventually performing clinical trials in diabetic patients. If successful, this approach could provide long-term blood sugar control for such patients. “Our goal is to continue to work hard to translate these promising results into a therapy that can help people,” Anderson said. “Being insulin-independent is the goal,” Vegas said. “This would be a state-of-the-art way of doing that, better than any other technology could. Cells are able to detect glucose and release insulin far better than any piece of technology we’ve been able to develop.” The researchers are also investigating why their new material works so well. They found that the best-performing materials were all modified with molecules containing a triazole group — a ring containing two carbon atoms and three nitrogen atoms. They suspect this class of molecules may interfere with the immune system’s ability to recognize the material as foreign. The work was supported, in part, by the JDRF, the Leona M. and Harry B. Helmsley Charitable Trust, the National Institutes of Health, and the Tayebati Family Foundation. Other authors of the papers include MIT postdoc Joshua Doloff; former MIT postdocs Minglin Ma and Kaitlin Bratlie; MIT graduate students Hok Hei Tam and Andrew Bader; Jeffrey Millman, an associate professor at Washington University School of Medicine; Mads Gürtler, a former Harvard graduate student; Matt Bochenek, a graduate student at the University of Illinois at Chicago; Dale Greiner, a professor of medicine at the University of Massachusetts Medical School; Jose Oberholzer, an associate professor at the University of Illinois at Chicago; and Gordon Weir, a professor of medicine at the Joslin Diabetes Center.


News Article | January 27, 2016
Site: news.mit.edu

In patients suffering from Type 1 diabetes, the immune system attacks the pancreas, eventually leaving patients without the ability to naturally control blood sugar. These patients must carefully monitor the amount of sugar in their blood, measuring it several times a day and then injecting themselves with insulin to keep their blood sugar levels within a healthy range. However, precise control of blood sugar is difficult to achieve, and patients face a range of long-term medical problems as a result. A better diabetes treatment, many researchers believe, would be to replace patients’ destroyed pancreatic islet cells with healthy cells that could take over glucose monitoring and insulin release. This approach has been used in hundreds of patients, but it has one major drawback — the patients’ immune systems attack the transplanted cells, requiring patients to take immunosuppressant drugs for the rest of their lives. Now, a new advance from MIT, Boston Children’s Hospital, and several other institutions may offer a way to fulfill the promise of islet cell transplantation. The researchers have designed a material that can be used to encapsulate human islet cells before transplanting them. In tests on mice, they showed that these encapsulated human cells could cure diabetes for up to six months, without provoking an immune response. Although more studies are needed, this approach “has the potential to provide diabetics with a new pancreas that is protected from the immune system, which would allow them to control their blood sugar without taking drugs. That’s the dream,” says Daniel Anderson, the Samuel A. Goldblith Associate Professor in MIT’s Department of Chemical Engineering, a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science (IMES), and a research fellow in the Department of Anesthesiology at Boston Children’s Hospital. Anderson is the senior author of two studies describing this method in the Jan. 25 issues of Nature Medicine and Nature Biotechnology. Researchers from Harvard University, the University of Illinois at Chicago, the Joslin Diabetes Center, and the University of Massachusetts Medical School also contributed to the research. Since the 1980s, a standard treatment for diabetic patients has been injections of insulin produced by genetically engineered bacteria. While effective, this type of treatment requires great effort by the patient and can generate large swings in blood sugar levels. At the urging of JDRF director Julia Greenstein, Anderson, Langer, and colleagues set out several years ago to come up with a way to make encapsulated islet cell transplantation a viable therapeutic approach. They began by exploring chemical derivatives of alginate, a material originally isolated from brown algae. Alginate gels can be made to encapsulate cells without harming them, and also allow molecules such as sugar and proteins to move through, making it possible for cells inside to sense and respond to biological signals. However, previous research has shown that when alginate capsules are implanted in primates and humans, scar tissue eventually builds up around the capsules, making the devices ineffective. The MIT/Children’s Hospital team decided to try to modify alginate to make it less likely to provoke this kind of immune response. “We decided to take an approach where you cast a very wide net and see what you can catch,” says Arturo Vegas, a former MIT and Boston Children’s Hospital postdoc who is now an assistant professor at Boston University. Vegas is the first author of the Nature Biotechnology paper and co-first author of the Nature Medicine paper. “We made all these derivatives of alginate by attaching different small molecules to the polymer chain, in hopes that these small molecule modifications would somehow give it the ability to prevent recognition by the immune system.” After creating a library of nearly 800 alginate derivatives, the researchers performed several rounds of tests in mice and nonhuman primates. One of the best of those, known as triazole-thiomorpholine dioxide (TMTD), they decided to study further in tests of diabetic mice. They chose a strain of mice with a strong immune system and implanted human islet cells encapsulated in TMTD into a region of the abdominal cavity known as the intraperitoneal space. The pancreatic islet cells used in this study were generated from human stem cells using a technique recently developed by Douglas Melton, a professor at Harvard University who is an author of the Nature Medicine paper. Following implantation, the cells immediately began producing insulin in response to blood sugar levels and were able to keep blood sugar under control for the length of the study, 174 days. “The really exciting part of this was being able to show, in an immune-competent mouse, that when encapsulated these cells do survive for a long period of time, at least six months,” says Omid Veiseh, a senior postdoc at the Koch Institute and Boston Children’s hospital, co-first author of the Nature Medicine paper, and an author of the Nature Biotechnology paper. “The cells can sense glucose and secrete insulin in a controlled manner, alleviating the mice’s need for injected insulin.” The researchers also found that 1.5-millimeter diameter capsules made from their best materials (but not carrying islet cells) could be implanted into the intraperitoneal space of nonhuman primates for at least six months without scar tissue building up. “The combined results from these two papers suggests that these capsules have real potential to protect transplanted cells in human patients,” says Robert Langer, the David H. Koch Institute Professor at MIT, a senior research associate at Boston’s Children Hospital, and co-author on both papers.  “We are so pleased to see this research in cell transplantation reach these important milestones.” Cherie Stabler, an associate professor of biomedical engineering at the University of Florida, says this approach is impressive because it tackles all aspects of the problem of islet cell delivery, including finding a source of cells, preventing an immune response, and developing a suitable delivery material. “It’s such a complex, multipronged problem that it’s important to get people from different disciplines to address it,” says Stabler, who was not involved in the research. “This is a great first step towards a clinically relevant, cell-based therapy for Type I diabetes.” The researchers now plan to further test their new materials in nonhuman primates, with the goal of eventually performing clinical trials in diabetic patients. If successful, this approach could provide long-term blood sugar control for such patients. “Our goal is to continue to work hard to translate these promising results into a therapy that can help people,” Anderson says. “Being insulin-independent is the goal,” Vegas says. “This would be a state-of-the-art way of doing that, better than any other technology could. Cells are able to detect glucose and release insulin far better than any piece of technology we’ve been able to develop.” The researchers are also investigating why their new material works so well. They found that the best-performing materials were all modified with molecules containing a triazole group — a ring containing two carbon atoms and three nitrogen atoms. They suspect this class of molecules may interfere with the immune system’s ability to recognize the material as foreign. The work was supported, in part, by the JDRF, the Leona M. and Harry B. Helmsley Charitable Trust, the National Institutes of Health, and the Tayebati Family Foundation. Other authors of the papers include MIT postdoc Joshua Doloff; former MIT postdocs Minglin Ma and Kaitlin Bratlie; MIT graduate students Hok Hei Tam and Andrew Bader; Jeffrey Millman, an associate professor at Washington University School of Medicine; Mads Gürtler, a former Harvard graduate student; Matt Bochenek, a graduate student at the University of Illinois at Chicago; Dale Greiner, a professor of medicine at the University of Massachusetts Medical School; Jose Oberholzer, an associate professor at the University of Illinois at Chicago; and Gordon Weir, a professor of medicine at the Joslin Diabetes Center.


Strzelecka J.,Children Hospital
Research in Autism Spectrum Disorders | Year: 2014

An important factor in the diagnosis and treatment of Autism spectrum disorder (ASD) is prescribed Electroencephalography (EEG). EEG changes may show the following: slowing, asymmetry, sharp waves or spikes, sharp and slow waves, generalized sharp and slow waves, or generalized polyspikes in a distributed or general area, multifocal or focal, unilateral or bilateral, and they may be located in many different areas of the brain. There is a need to look for a EEG phenotype typical of patients with ASD. The importance of gamma waves, rhythm mu, mirror neurons, and their role in patients with ASD was discussed. Epilepsy is reported to occur in one third of ASD patients. In ASD, seizures and EEG paroxysmal abnormalities could represent an epiphenomenon of a cerebral dysfunction independent of apparent lesions. This article reviews ASD and EEG abnormalities and discusses the interaction between epileptiform abnormalities and cognitive dysfunction. © 2013 Elsevier Ltd. All rights reserved.


Mallick M.S.,Children Hospital
African Journal of Paediatric Surgery | Year: 2014

Background: Foreign body aspiration (FBA) is a common cause of respiratory compromise in early childhood. The objective of this study was to describe the features and outcomes of children with FBA in early and late presentations and to examine the reasons for the delay in diagnosis. Patients and Methods: This is a retrospective review of all children who were admitted with suspected FBA between July 2001 and June 2010. Patient's characteristics, history, clinical, radiographic, bronchoscopic findings, reason for delay presentation, and complications were noted. Results: A total of 158 children admitted to the hospital with suspected FBA were included in this study. The average age was 3.28 years. Forty-eight (30.3%) children were presented late (more than 14 days after FBA) and 110 (69.7%) children were presented early (0-14 days). The common clinical manifestations of FBA were persistent cough (100%) and choking (72%). The most frequent radiological finding observed was air trapping (40%) followed by atelectasis (14%). Chest radiographs were normal in 32.2% patients. Ten children in early diagnosis group and 29 children in late diagnosis group presented with complications. The diagnosis delay was mainly attributed to physician misdiagnosis (41.6%). Rigid bronchoscopy was performed in all patients. Foreign body was found in all of the cases except six. Watermelon seeds and peanuts accounted for 80% of the aspiration. Conclusion: FBA is difficult to diagnose in children. Delay in diagnosis appears to result from a failure to give serious consideration to the diagnosis. Early diagnosis and removal of foreign bodies must be achieved to avoid complications. © 2014 African Journal of Paediatric Surgery. All rights reserved.


De Filippis B.,Instituto Superiore Of Sanita | Romano E.,Instituto Superiore Of Sanita | Romano E.,Children Hospital | Laviola G.,Instituto Superiore Of Sanita
Neuroscience and Biobehavioral Reviews | Year: 2014

Rho GTPases are key intracellular signaling molecules that coordinate dynamic changes in the actin cytoskeleton, thereby stimulating a variety of processes, including morphogenesis, migration, neuronal development, cell division and adhesion. Deviations from normal Rho GTPases activation state have been proposed to disrupt cognition and synaptic plasticity. This review focuses on the functional consequences of genetic ablation of upstream and downstream Rho GTPases molecules on cognitive function and neuronal morphology and connectivity. Available information on this issue is described and compared to that gained from mice carrying mutations in the most studied Rho GTPases and from pharmacological in vivo studies in which brain Rho GTPases signaling was modulated. Results from reviewed literature provide definitive evidence of a compelling link between Rho GTPases signaling and cognitive function, thus supporting the notion that Rho GTPases and their downstream effectors may represent important therapeutic targets for disorders associated with cognitive dysfunction. © 2014 Elsevier Ltd.

Loading Children Hospital collaborators
Loading Children Hospital collaborators